
Advance Technologies; Automate the World.

Manual Rev. 3.00

Revision Date: Jan. 31, 2012

Part No: 50-11136-1020

PCI-8102
Advanced 2-Axis Servo/Stepper

Motion Control Card
User’s Manual

Revision History

Revision Release Date Description of Change(s)

2.01 Feb 26, 2009 Initial release
3.00 Jan. 31, 2012 Updated spec for 2012 release

Table of Contents i

PCI-8102

Table of Contents
Revision History.. ii

List of Figures .. vi

Preface .. ix

1 Introduction .. 1
1.1 Features... 4
1.2 Specifications... 5
1.3 Supported Software ... 7

Programming Library .. 7
MotionCreatorPro ... 7

1.4 Available Terminal Board... 7

2 Installation .. 9
2.1 Package Contents ... 9
2.2 PCI-8102 Outline Drawing ... 10
2.3 PCI-8102 Hardware Installation... 11

Hardware Configuration .. 11
PCI Slot Selection ... 11
Installation Procedures ... 11
Troubleshooting .. 12

2.4 Software Driver Installation.. 12
2.5 P1 Pin Assignments: Main connector 13
2.6 P2 Pin Assignment: Digital Inputs / Outputs 15
2.7 K1/K2 Pin Assignments: Simultaneous Start/Stop 17
2.8 Jumper Settings for Pulse Output...................................... 17
2.9 CMP & EMG Interface Settings ... 18
2.10 Switch Setting for card index ... 19

3 Signal Connections.. 21
3.1 Pulse Output Signals OUT and DIR 21
3.2 Encoder Feedback Signals EA, EB and EZ....................... 23
3.3 EMG Emergency Stop ... 25
3.4 Origin Signal ORG ... 26
3.5 End-Limit Signals PEL and MEL.. 27
3.6 In-Position Signal INP.. 28
3.7 Alarm Signal ALM .. 29

ii Table of Contents

3.8 Deviation Counter Clear Signal ERC................................. 29
3.9 General-Purpose Signal SVON ... 30
3.10 General-Purpose Signal RDY.. 31
3.11 Position Compare Output pin: CMP................................... 31
3.12 Multi-Functional Input Pin: LTC/SD/PCS/CLR................... 33
3.13 Simultaneously Start/Stop Signals STA and STP.............. 33
3.14 General Purpose Digital Input/Output 35

Extended DSUB 37-pin Connector 36

4 Operations... 39
4.1 Classifications of Motion Controller.................................... 39

Voltage Type Motion Control Interface 39
Pulse Type Motion Control Interface 39
Network Type Motion Control Interface 40
Software Real-time Motion Control Kernel 40
DSP Based Motion Control Kernel 41
ASIC Based Motion Control Kernel 41
Compare Table of All Motion Control Types 42
PCI-8102’s Motion Controller Type 42

4.2 Motion Control Modes.. 42
Coordinate System ... 43
Absolute and Relative Position Move 44
Trapezoidal Speed Profile .. 44
S-Curve and Bell-Curve Speed Profile 46
Velocity Mode ... 48
One Axis Position Mode ... 48
Two Axes Linear Interpolation Position Mode 49
Two Axes Circular Interpolation Mode 50
Continuous Motion .. 52
Home Return Mode .. 54
Home Search Function ... 61
Manual Pulser Function .. 62
Simultaneous Start Function ... 63
Speed Override Function .. 63
Position Override Function ... 64

4.3 Motor Driver Interface .. 65
Pulse Command Output Interface 65
Pulse Feedback Input Interface 68
In Position Signal .. 70
Servo Alarm Signal ... 70

Table of Contents iii

PCI-8102

Error Clear Signal ... 71
Servo ON/OFF Switch .. 71
Servo Ready Signal .. 71
Servo Alarm Reset Switch .. 72

4.4 Mechanical Switch Interface .. 72
Original or Home Signal .. 72
End-Limit Switch Signal .. 72
Slow Down Switch .. 73
Positioning Start switch ... 73
Counter Clear switch .. 73
Counter Latch Switch .. 73
Emergency Stop Input .. 74

4.5 Counters .. 75
Command Position Counter .. 75
Feedback Position Counter .. 75
Command and Feedback Error Counter 76
General Purpose Counter ... 76
Target Position Recorder .. 76

4.6 Comparators .. 77
Soft End-Limit Comparators ... 77
Command and Feedback Error Counter Comparators . 77
General Comparator ... 78
Trigger Comparator .. 78

4.7 Other Motion Functions ... 79
Backlash Compensation and Slip Corrections 79
Vibration Restriction Function 79
Speed Profile Calculation Function 80

4.8 Interrupt Control... 81
4.9 Multiple Card Operation... 84

5 MotionCreatorPro... 85
5.1 Execute MotionCreatorPro .. 85
5.2 About MotionCreatorPro .. 85
5.3 MotionCreatorPro Form Introduction 87

Main Menu .. 87
Select Menu .. 88
Card Information Menu ... 89
Configuration Menu .. 90
Single Axis Operation Menu ... 96
Two-Axis Operation Menu .. 103

iv Table of Contents

2D_Motion Menu .. 107
Help Menu .. 113

6 Function Library.. 115
6.1 List of Functions... 115
6.2 C/C++ Programming Library .. 121
6.3 Initialization .. 122
6.4 Pulse Input/Output Configuration..................................... 125
6.5 Velocity mode motion... 127
6.6 Single Axis Position Mode ... 130
6.7 Linear Interpolated Motion ... 134
6.8 Circular Interpolation Motion .. 137
6.9 Home Return Mode.. 140
6.10 Manual Pulser Motion .. 143
6.11 Motion Status ... 145
6.12 Motion Interface I/O ... 147
6.13 Interrupt Control ... 154
6.14 Position Control and Counters ... 158
6.15 Position Compare and Latch.. 162
6.16 Continuous Motion ... 166
6.17 Multiple Axes Simultaneous Operation 168
6.18 General-Purposed DIO .. 171
6.19 Soft Limit .. 173
6.20 Backlash Compensation / Vibration Suppression 175
6.21 Speed Profile Calculation... 177
6.22 Return Code... 180

7 Connection Example .. 183
7.1 General Description of Wiring .. 183
7.2 Wiring with DIN-68M-J3A... 183

Pin Assignments: .. 185
Signal Connections of Interface Circuit 190
Mechanical Dimensions: ... 193

Appendix .. 195
8.1 Color code of Mitsubishi servo J3A cable 195

Important Safety Instructions... 197

Getting Service .. 199

vi List of Figures

List of Figures
Figure 1-1: PCI-8102 Block Diagram ... 2
Figure 1-2: Flow Chart for Building an Application....................... 3
Figure 2-1: PCB Layout of the PCI-8102 10

List of Figures vii

PCI-8102

This page intentionally left blank.

viii List of Figures

Preface ix

PCI-8102

Preface
Copyright 2011 ADLINK Technology Inc.
This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Disclaimer
The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

Environmental Responsibility
ADLINK is committed to fulfill its social responsibility to global
environmental preservation through compliance with the Euro-
pean Union's Restriction of Hazardous Substances (RoHS) direc-
tive and Waste Electrical and Electronic Equipment (WEEE)
directive. Environmental protection is a top priority for ADLINK.
We have enforced measures to ensure that our products, manu-
facturing processes, components, and raw materials have as little
impact on the environment as possible. When products are at their
end of life, our customers are encouraged to dispose of them in
accordance with the product disposal and/or recovery programs
prescribed by their nation or company.

Trademarks
Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

x Preface

Conventions
Take note of the following conventions used throughout this
manual to make sure that users perform certain tasks and
instructions properly.

NOTE:NOTE:

Additional information, aids, and tips that help users perform
tasks.

CAUTION:

Information to prevent minor physical injury, component dam-
age, data loss, and/or program corruption when trying to com-
plete a task.

WARNING:

Information to prevent serious physical injury, component
damage, data loss, and/or program corruption when trying to
complete a specific task.

Introduction 1

PCI-8102

1 Introduction
The PCI-8102 is an advanced 2-axis motion controller card with a
PCI interface. It can generate high frequency pulses (6.55MHz) to
drive stepper or servomotors. As a motion controller, it can provide
2-axis linear and circular interpolation and continuous interpolation
for continuous velocity. Also, changing position/speed on the fly is
available with a single axis operation.

Multiple PCI-8102 cards can be used in one system. Incremental
encoder interface on all four axes provide the ability to correct
positioning errors generated by inaccurate mechanical transmis-
sions. PCI-8102 features the position compare and trigger output
function which users can put the comparing points with ADLINK
library and sending the triggering pulse to other device. In addi-
tion, a mechanical sensor interface, servo motor interface, and
general-purposed I/O signals are provided for easy system inte-
gration.

Figure 1-1 shows the functional block diagram of the PCI-8102
card. The motion control functions include trapezoidal and S-curve
acceleration/deceleration, linear and circular interpolation between
two axes and continuous motion positioning, and 13 home return
modes. All these functions and complex computations are per-
formed internally by the ASIC, thus it can save CPU loading.

The PCI-8102 also offers three user-friendly functions. The
PCI-8102 can let users assign the card index with the DIP switch
setting. The value is within 0 to 15. It is useful for machine makers
to recognize the card index if the whole control system is very
huge. The emergency input pin can let users wire the emergency
button to trigger this board to stop sending pulse output once there
is any emergency situation happened. For security protection
design, users can set the 16-bit value into EEPROM. Users’ inter-
face program can uses this EEPROM to secure the software and
hardware in order to prevent piracy.

2 Introduction

Figure 1-1: PCI-8102 Block Diagram

MotionCreatorPro is a Windows-based application development
software package included with the PCI-8102. MotionCreatorPro
is useful for debugging a motion control system during the design
phase of a project. An on-screen display lists all installed axes
information and I/O signal status of the PCI-8102.

Windows programming libraries are also provided for C++ com-
piler and Visual Basic. Sample programs are provided to illustrate
the operations of the functions.

Figure 1-2 illustrates a flow chart of the recommended process in
using this manual in developing an application. Refer to the
related chapters for details of each step.

 PCI Bus

 PLX9052

ASIC

SCSI 68 P1

STA/STP K1&2

CPLD ROM

Digital I/O Isolation

16 DI/O P2
VCC

DC/DC

VDD +24V

CardID S1

Introduction 3

PCI-8102

Figure 1-2: Flow Chart for Building an Application

4 Introduction

1.1 Features
The following list summarizes the main features of the PCI-8102
motion control system.

32-bit PCI bus Plug and Play
2 axes of step and direction pulse output for controlling
stepping or servomotor
Maximum output frequency of 6.55 MPPS
Pulse output options: OUT/DIR, CW/CCW
Programmable acceleration and deceleration time for all
modes
Trapezoidal and S-curve velocity profiles for all modes
2 axes linear / circular interpolation
Continuous interpolation for contour following motion
Change position and speed on the fly
13 home return modes with auto searching
Hardware backlash compensator and vibration suppression
2 software end-limits for each axis
28-bit up/down counter for incremental encoder feedback
Home switch, index signal (EZ), positive, and negative end
limit switches interface on all axes
2-axis high speed position latch input
2-axis position compare trigger output
All digital input and output signals are 2500Vrms isolated
Programmable interrupt sources
Simultaneous start/stop motion on multiple axes
Manual pulser input interface
Card index selection
Security protection on EERPOM
Dedicated emergency input pin for wiring
Software supports a maximum of up to 12 PCI-8102 cards
operation in one system
Compact PCB design
Includes MotionCreatorPro, a Microsoft Windows-based

Introduction 5

PCI-8102

application development software
PCI-8102 libraries and utilities for Windows 2000/XP/7

1.2 Specifications
Applicable Motors:

Stepping motors
AC or DC servomotors with pulse train input servo driv-
ers

Performance:
Number of controllable axes: 2
Maximum pulse output frequency: 6.55MPPS, linear,
trapezoidal, or S-Curve velocity profile drive
Internal reference clock: 19.66 MHz
28-bit up/down counter range: 0-268,435,455 or –
134,217,728 to +134,217,727
Position pulse setting range (28-bit): -134,217,728 to
+134,217,728
Pulse rate setting range (Pulse Ratio = 1: 65535):

0.1 PPS to 6553.5 PPS. (Multiplier = 0.1)

1 PPS to 65535 PPS. (Multiplier = 1)

6 Introduction

100 PPS to 6553500 PPS. (Multiplier = 100)

I/O Signals:
Input/Output signals for each axis
All I/O signal are optically isolated with 2500Vrms isola-
tion voltage
Command pulse output pins: OUT and DIR
Incremental encoder signals input pins: EA and EB
Encoder index signal input pin: EZ
Mechanical limit/switch signal input pins: ±EL, SD/PCS,
and ORG
Servomotor interface I/O pins: INP, ALM, and ERC
Position latch input pin: LTC
Position compare output pin: CMP
General-purposed digital output pin: SVON
General-purposed digital input pin: RDY
Pulse signal input pin: PA and PB (with isolation)
Simultaneous Start/Stop signal: STA and STP
Emergency input signal: EMG

General-Purpose Output
20 digital inputs / 18 digital outputs

General Specifications
Connectors: 68-pin SCSI-type connector
Operating Temperature: 0°C - 50°C
Storage Temperature: -20°C - 80°C
Humidity: 5 - 85%, non-condensing

Power Consumption
Slot power supply (input): +5V DC ±5%, 900mA max
External power supply (input): +24V DC ±5%, 500mA
max
External power supply (output): +5V DC ±5%, 500mA,
max

Introduction 7

PCI-8102

PCI-8102 Dimension (PCB size): 120mm(L) X 100mm(W)

1.3 Supported Software

Programming Library
Windows 2000/XP/7 (32bit/64bit) DLLs are provided for PCI-8102
users. These function libraries are shipped with the board.

MotionCreatorPro
This Windows-based utility is used to setup cards, motors, and
systems. It can also aid in debugging hardware and software prob-
lems. It allows users to set I/O logic parameters to be loaded in
their own program. This product is also bundled with the card.

Refer to Chapter 5 for more details.

1.4 Available Terminal Board
ADLINK provides a variety of specific terminal boards for connec-
tion to individual servos, such as Mitsubishi J2S, J3A, Panasonic
MINAS A4, Yaskawa Sigma II, III and V, as well as a DIN-68S0
board for general purpose usage. Available terminal boards are
available as follows.

PCI-1802
Terminal Board

Corresponding
Servo Driver Board Appearance

DIN-68M-J2A0 Mitsubishi J2S
series

DIN-68M-J3A0 Mitsubishi J3A
series

8 Introduction

DIN-68P-A40 Panasonic MINAS
A4 and A5 series

DIN-68Y-SGII0 Yaskawa Sigma
II, III and V series

DIN-68S0 General Purpose

PCI-1802
Terminal Board

Corresponding
Servo Driver Board Appearance

This page intentionally left blank.

Installation 9

PCI-8102

2 Installation
This chapter describes how to install the PCI-8102 series. Please
follow these steps below:

Check what you have (section 2.1)
Check the PCB (section 2.2)
Install the hardware (section 2.3)
Install the software driver (section 2.4)
Understanding the I/O signal connections (chapter 3) and
their operation (chapter 4)
Understanding the connector pin assignments (the remain-
ing sections) and wiring the connections

2.1 Package Contents
In addition to this User’s Guide, the package also includes the fol-
lowing items:

PCI-8102: advanced 2-Axis Servo / Stepper Motion Control
Card
Extension cable: DB37FM-IDC44 flat cable
ADLINK All-in-one Compact Disc

If any of these items are missing or damaged, contact the dealer
from whom you purchased the product. Save the shipping materi-
als and carton to ship or store the product in the future.

10 Installation

2.2 PCI-8102 Outline Drawing

Figure 2-1: PCB Layout of the PCI-8102

P1: Input / Output Signal Connector (68-pin)
P2: 16 Digital Input / Output Signals Connector
K1 / K2: Simultaneous Start / Stop Connector
SW1: DIP switch for card index selection (0-15)
J8-J11: Pulse output selection jumper
J12/J13: CMP output interface selection jumper
J14: EMG input signal setting

Installation 11

PCI-8102

2.3 PCI-8102 Hardware Installation

2.3.1 Hardware Configuration
The PCI-8102 is fully Plug and Play compliant. Hence memory
allocation (I/O port locations) and IRQ channel of the PCI card are
assigned by the system BIOS. The address assignment is done
on a board-by-board basis for all PCI cards in the system.

2.3.2 PCI Slot Selection
Your computer system may have both PCI and ISA slots. Do not
force the PCI card into a PC/AT slot. The PCI-8102 can be used in
any PCI slot.

2.3.3 Installation Procedures
1. Read through this manual and setup the jumper accord-

ing to your application

2. Turn off your computer. Turn off all accessories (printer,
modem, monitor, etc.) connected to computer. Remove
the cover from your computer.

3. Select a 32-bit PCI/PXI expansion slot. PCI slots are
shorter than ISA or EISA slots and are usually white or
ivory.

4. Before handling the PCI-8102, discharge any static
buildup on your body by touching the metal case of the
computer. Hold the edge of the card and do not touch
the components.

5. Position the board into the PCI slot you have selected.

6. Secure the card in place at the rear panel of the system
unit using screws removed from the slot.

12 Installation

2.3.4 Troubleshooting
If your system doesn’t boot or if you experience erratic operation
with your PCI board in place, it’s most likely caused by an interrupt
conflict (possibly an incorrect ISA setup). In general, the solution,
once determined it is not a simple oversight, is to consult the BIOS
documentation that comes with your system.

Check the control panel of the Windows system if the card is listed
by the system. If not, check the PCI settings in the BIOS or use
another PCI slot.

2.4 Software Driver Installation
PCI-8102:
1. Auto run the ADLINK All-In-One CD. Choose Driver

Installation -> Motion Control -> PCI-8102.

2. Follow the procedures of the installer.

3. After setup installation is completed, restart windows.

Suggestion: Please download the latest software from ADLINK
website if necessary.

Installation 13

PCI-8102

2.5 P1 Pin Assignments: Main connector
P1 is the major connector for the motion control I/O signals.

No. Name I/O Function Axis
0 No. Name I/O Function Axis

1

1 VPP O Isolated +5V
Output 35 VPP O Isolated +5V

Output

2 EXGND - Ext. power
ground 36 EXGND - Ext. power

ground

3 OUT0+ O Pulse signal
(+) 37 OUT1+ O Pulse signal

(+)
4 OUT0- O Pulse signal (-) 38 OUT1- O Pulse signal (-)
5 DIR0+ O Dir. signal (+) 39 DIR1+ O Dir. signal (+)
6 DIR0- O Dir. signal (-) 40 DIR1- O Dir. signal (-)
7 SVON0 O Servo On/Off 41 SVON1 O Servo On/Off

8 ERC0 O Dev. ctr, clr.
signal 42 ERC1 O Dev. ctr, clr.

Signal
9 ALM0 I Alarm signal 43 ALM1 I Alarm signal

10 INP0 I In-position sig-
nal 44 INP1 I In-position sig-

nal

11 RDY0 I Multi-purpose
input signal 45 RDY1 I Multi-purpose

input signal

12 EA0+ I Encoder A-
phase (+) 46 EA1+ I Encoder A-

phase (+)

13 EA0- I Encoder A-
phase (-) 47 EA1- I Encoder A-

phase (-)

14 EB0+ I Encoder B-
phase (+) 48 EB1+ I Encoder B-

phase (+)

15 EB0- I Encoder B-
phase (-) 49 EB1- I Encoder B-

phase (-)

16 EZ0+ I Encoder Z-
phase (+) 50 EZ1+ I Encoder Z-

phase (+)

17 EZ0- I Encoder Z-
phase (-) 51 EZ1- I Encoder Z-

phase (-)

18 VPP O Isolated +5V
Output 52 VPP O Isolated +5V

Output

Table 2-1: P1 Pin Assignment

14 Installation

19 N/C 53 EXGND - Ext. power
ground

20 PEL0 I End limit signal
(+) 54 PEL1 I End limit signal

(+)

21 MEL0 I End limit signal
(-) 55 MEL1 I End limit signal

(-)

22 EXGND - Ext. power
ground 56 EXGND - Ext. power

ground

23
LTC/SD/
PCS0/
CLR0

I
Composite

Funtion
(Default: LTC)

57
LTC/SD/
PCS1/
CLR1

I
Composite

Funtion
(Default: LTC)

24 ORG0 I Origin signal 58 ORG1 I Origin signal

25 N/C 59 EXGND - Ext. power
ground

26 PA+_ISO I Manual Pulser
Input A 60 EMG I Emergency

Input

27 PA-_ISO I Manual Pulser
Input A 61 DIN0 I Digital Input 0

28 PB+_ISO I Manual Pulser
Input B 62 DIN1 I Digital Input 1

29 PB-_ISO I Manual Pulser
Input B 63 DIN2 I Digital Input 2

30 CMP0 O TTL Compare
Output 0 64 DIN3 I Digital Input 3

31 CMP1 O TTL Compare
Output 1 65 DOUT0 O Digital Output

0,SVO RST

32 EXGND - Ext. power
ground 66 DOUT1 O Digital Output

1,SVO RST

33 EXGND - Ext. power
ground 67 EXGND - Ext. power

ground

34 EX+24V I +24V isolation
power input 68 EX+24V I +24V isolation

power input

No. Name I/O Function Axis
0 No. Name I/O Function Axis

1

Table 2-1: P1 Pin Assignment

Installation 15

PCI-8102

2.6 P2 Pin Assignment: Digital Inputs / Outputs
P2 is the second connector for the additional 16 DI/O signals.

No. Name I/O Function No. Name I/O Function

1 EX_GND -- External Power
Ground 2 EX_GND -- External Power

Ground

3 DI0 I Discrete Input
Channel 0 4 DI1 I Discrete Input

Channel 1

5 DI2 I Discrete Input
Channel 2 6 DI3 I Discrete Input

Channel 3

7 DI4 I Discrete Input
Channel 4 8 DI5 I Discrete Input

Channel 5

9 VDD O External +5V
Power 10 EX_GND -- External Power

Ground

11 DI6 I Discrete Input
Channel 6 12 DI7 I Discrete Input

Channel 7

13 DI8 I Discrete Input
Channel 8 14 DI9 I Discrete Input

Channel 9

15 DI10 I Discrete Input
Channel 10 16 DI11 I Discrete Input

Channel 11

17 EX_GND -- External Power
Ground 18 EX_GND -- External Power

Ground

19 DI12 I Discrete Input
Channel 12 20 DI13 I Discrete Input

Channel 13

21 DI14 I Discrete Input
Channel 14 22 DI15 I Discrete Input

Channel 15

23 DO0 O Discrete Output
Channel 0 24 DO1 O Discrete Output

Channel 1

25 DO2 O Discrete Output
Channel 2 26 DO3 O Discrete Output

Channel 3

27 EX_GND -- External Power
Ground 28 EX_GND -- External Power

Ground

29 DO4 O Discrete Output
Channel 4 30 DO5 O Discrete Output

Channel 5

31 DO6 O Discrete Output
Channel 6 32 DO7 O Discrete Output

Channel 7

Table 2-2: P2 Pin Assignment

16 Installation

33 DO8 O Discrete Output
Channel 8 34 DO9 O Discrete Output

Channel 9

35 EX_GND -- External Power
Ground 36 VDD O External +5V

Power

37 DO10 O Discrete Output
Channel 10 38 DO11 O Discrete Output

Channel 11

39 DO12 O Discrete Output
Channel 12 40 DO13 O Discrete Output

Channel 13

41 DO14 O Discrete Output
Channel 14 42 DO15 O Discrete Output

Channel 15

43 EX_GND -- External Power
Ground 44 EX_GND -- External Power

Ground

No. Name I/O Function No. Name I/O Function

Table 2-2: P2 Pin Assignment

Installation 17

PCI-8102

2.7 K1/K2 Pin Assignments: Simultaneous Start/
Stop
CN4 is for simultaneous start/stop signals for multiple axes or mul-
tiple cards.

Note: +5V and GND pins are provided by the PCI Bus power.

2.8 Jumper Settings for Pulse Output
J8-J11 are used to set the type of pulse output signals (DIR and
OUT). The output signal type can either be differential line driver
or open collector output. Refer to section 3.1 for detail jumper set-
tings. The default setting is differential line driver mode. The
default setting is differential line driver mode. J8 & J9 are for axis
0; J10 & J11 are for axis 1.

No. Name Function (Axis)

1 +5V PCI Bus power Output (VCC)
2 STA Simultaneous start signal input/output
3 STP Simultaneous stop signal input/output
4 GND PCI Bus power ground

18 Installation

2.9 CMP & EMG Interface Settings
Jumpers J12 and J13 identify the CMP signal output interface as
Pull-Up or OPEN-Collector, with the latter requiring pull up of the
CMP signal.

To reduce evaluation and debugging, the PCI-8102 provides the
jumper J14 to enable or disable EMG function as the following set-
ting.

EMG disabled (Debug)

EMG enabled (Normal)

Installation 19

PCI-8102

2.10 Switch Setting for card index
The SW1 switch is used to set the card index. For example, if you
turn 1 to ON and others are OFF. It means the card index as 1.
The value is from 0 to 15. Refer to the following table for details.

Card
ID

Switch Setting
(ON=1)

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

20 Installation

This page intentionally left blank.

Signal Connections 21

PCI-8102

3 Signal Connections
Signal connections of all I/O’s are described in this chapter. Refer
to the contents of this chapter before wiring any cables between
the 8102 and any motor drivers.

3.1 Pulse Output Signals OUT and DIR
There are 2 axis pulse output signals on the PCI-8102. For each
axis, two pairs of OUT and DIR signals are used to transmit the
pulse train and to indicate the direction. The OUT and DIR signals
can also be programmed as CW and CCW signal pairs. Refer to
section 4.1 for details of the logical characteristics of the OUT and
DIR signals. In this section, the electrical characteristics of the
OUT and DIR signals are detailed. Each signal consists of a pair of
differential signals. For example, OUT0 consists of OUT0+ and
OUT0- signals. The following table shows all pulse output signals
on P1.

The output of the OUT or DIR signals can be configured by jump-
ers as either differential line drivers or open collector output. Users

P1 Pin No. Signal Name Description Axis #

3 OUT0+ Pulse signals (+) 1
4 OUT0- Pulse signals (-) 1
5 DIR0+ Direction signal (+) 1
6 DIR0- Direction signal (-) 1
37 OUT1+ Pulse signals (+) 2
38 OUT1- Pulse signals (-) 2
39 DIR1+ Direction signal (+) 2
40 DIR1- Direction signal (-) 2

22 Signal Connections

can select the output mode either by shorting pins 1 and 2 or 2
and 3 of jumpers J8-J11 as follows:

The default setting of OUT and DIR is set to differential line driver
mode. The following wiring diagram is for OUT and DIR signals on
the 2 axes.

PCI-8102:

NOTE: If the pulse output is set to open collector output mode,
OUT- and DIR- are used to transmit OUT signals. The sink current
must not exceed 20mA on the OUT- and DIR- pins. The default
setting of jumper is 1-2 shorted. The default setting is 1-2 shorted.

Suggest Usage: Jumper 2-3 shorted and connect OUT+/DIR+ to a
470 ohm pulse input interface’s COM of driver. See the following
figure.

Warning: The sink current must not exceed 20mA or the 26LS31 will
be damaged.

Output Signal
For differential line driver
output, short pins 1 and 2

of:

For open collector output,
short pins 2 and 3 of:

OUT0- J8 J8
DIR0- J9 J9
OUT1- J10 J10
DIR1- J11 J11

 VDDVCC

4.7K

OUT/DIR

26LS31
J8-J11

OUT+/DIR+

OUT-/DIR-
EXGND

1
2

3

VDD (+5V)

Signal Connections 23

PCI-8102

3.2 Encoder Feedback Signals EA, EB and EZ
The encoder feedback signals include EA, EB, and EZ. Every axis
has six pins for three differential pairs of phase-A (EA), phase-B
(EB), and index (EZ) inputs. EA and EB are used for position
counting, and EZ is used for zero position indexing. Its relative sig-
nal names, pin numbers, and axis numbers are shown as follows:

The input circuit of the EA, EB, and EZ signals is shown as fol-
lows:

Please note that the voltage across each differential pair of
encoder input signals (EA+, EA-), (EB+, EB-), and (EZ+, EZ-)
should be at least 3.5V. Therefore, the output current must be
observed when connecting to the encoder feedback or motor
driver feedback as not to over drive the source. The differential
signal pairs are converted to digital signals EA, EB, and EZ; then
feed to the motion control ASIC.

Below are examples of connecting the input signals with an exter-
nal circuit. The input circuit can be connected to an encoder or

P1 Pin No Signal
Name

Axis
P1 Pin No Signal

Name
Axis

#

12 EA0+ 1 13 EA0- 1
14 EB0+ 1 15 EB0- 1
46 EA1+ 2 47 EA1- 2
48 EA1+ 2 49 EA1- 2

P1 Pin No Signal
Name

Axis
P1 Pin No Signal

Name
Axis

#

16 EZ0+ 1 17 EZ0- 1
50 EZ1+ 2 51 EZ1- 2

Motion IC

EA, EB, EZ

EA+, EB+, EZ+

EA-, EB-
EZ-

R = 330 Ohm
P1Inside 8102

C = 100 p

HP0631

24 Signal Connections

motor driver if it is equipped with: (1) a differential line driver or (2)
an open collector output.

Connection to Line Driver Output
To drive the PCI-8102 encoder input, the driver output must pro-
vide at least 3.5V across the differential pairs with at least 6mA
driving capacity. The grounds of both sides must be tied together.
The maximum frequency will be 6.5Mhz or more depends on wir-
ing distance and signal conditioning.

Connection to Open Collector Output
To connect with an open collector output, an external power sup-
ply is necessary. Some motor drivers can provide the power
source. The connection between the PCI-8102, encoder, and the
power supply is shown in the diagram below. Note that an external
current limiting resistor R is necessary to protect the PCI-8102
input circuit. The following table lists the suggested resistor values
according to the encoder power supply.

If max power = 6mA

Encoder Power (V) External Resistor R

+5V 0Ω(None)

+12V 1.8kΩ
+24V 4.3kΩ

 External Encoder / Driver
With line driver output Inside

8102

A,B phase signals
Index signal

EA+,EB+,EZ+
EA-, EB-, EZ-

EGND GND

Signal Connections 25

PCI-8102

For more operation information on the encoder feedback signals,
refer to section 4.4.

3.3 EMG Emergency Stop
An emergency stop input channel is provided, as shown. When
the EMG signal is active, all motion pulse output command is
rejected until the EMG is deactivated. The emergency stop switch
is set to B-type (Normal-Closed), requiring normal connection to
ground.

P1 Pin No Signal Name Axis #

60 EMG 1 & 2

V
GND

Motor Encoder / Driver
With Open Collector Output

External Power for Encoder
Inside
PCI-8102

A, B phase signals
Index signal

EA+, EB+, EZ+

EA-, EB-, EZ-

R

Inside 8102 P1

26 Signal Connections

3.4 Origin Signal ORG
The origin signals (ORG0~ORG1) are used as input signals for the
origin of the mechanism. The following table lists signal names,
pin numbers, and axis numbers:

The input circuit of the ORG signals is shown below. Usually, a
limit switch is used to indicate the origin on one axis. The specifi-
cations of the limit switch should have contact capacity of +24V @
6mA minimum. An internal filter circuit is used to filter out any high
frequency spikes, which may cause errors in the operation.

When the motion controller is operated in the home return mode,
the ORG signal is used to inhibit the control output signals (OUT
and DIR). For detailed operations of the ORG signal, refer to sec-
tion 4.3.

P1 Pin No Signal Name Axis #

24 ORG0 1
58 ORG1 2

Inside 8102 P1

Signal Connections 27

PCI-8102

3.5 End-Limit Signals PEL and MEL
There are two end-limit signals PEL and MEL for each axis. PEL
indicates the end limit signal is in the plus direction and MEL indi-
cates the end limit signal is in the minus direction. The signal
names, pin numbers, and axis numbers are shown in the table
below:

A circuit diagram is shown in the diagram below. The external limit
switch should have a contact capacity of +24V @ 8mA minimum.
Either ‘A-type’ (normal open) contact or ‘B-type’ (normal closed)
contact switches can be used. To set the active logic of the exter-
nal limit signal, please refer to the explanation of
_8102_set_limit_logic function.

P1 Pin No Signal
Name

Axis
P1 Pin No Signal

Name
Axis

#

20 PEL0 1 21 MEL0 1
54 PEL1 2 55 MEL1 2

Inside 8102 P1

28 Signal Connections

3.6 In-Position Signal INP
The in-position signal INP from a servo motor driver indicates its
deviation error. If there is no deviation error then the servo’s posi-
tion indicates zero. The signal names, pin numbers, and axis num-
bers are shown in the table below:

The input circuit of the INP signals is shown in the diagram below:

The in-position signal is usually generated by the servomotor
driver and is ordinarily an open collector output signal. An external
circuit must provide at least 8mA current sink capabilities to drive
the INP signal.

P1 Pin No Signal Name Axis #

10 INP0 1
44 INP1 2

P1

VDD (+5V)

Inside 8102 P1

Signal Connections 29

PCI-8102

3.7 Alarm Signal ALM
The alarm signal ALM is used to indicate the alarm status from the
servo driver. The signal names, pin numbers, and axis numbers
are shown in the table below:

The input alarm circuit is shown below. The ALM signal usually is
generated by the servomotor driver and is ordinarily an open col-
lector output signal. An external circuit must provide at least 8mA
current sink capabilities to drive the ALM signal.

3.8 Deviation Counter Clear Signal ERC
The deviation counter clear signal (ERC) is active in the following
4 situations:

1. Home return is complete

2. End-limit switch is active

3. An alarm signal stops OUT and DIR signals

4. An emergency stop command is issued by software
(operator)

P1 Pin No Signal Name Axis #

9 ALM0 1
43 ALM1 2

VDD (+5V)

Inside 8102 P1

30 Signal Connections

The signal names, pin numbers, and axis numbers are shown in
the table below:

The ERC signal is used to clear the deviation counter of the servo-
motor driver. The ERC output circuit is an open collector with a
maximum of 35V at 50mA driving capacity.

3.9 General-Purpose Signal SVON
The SVON signal can be used as a servomotor-on control or gen-
eral purpose output signal. The signal names, pin numbers, and
its axis numbers are shown as follows:

P1 Pin No Signal Name Axis #

8 ERC0 1
42 ERC1 2

P1 Pin No Signal Name Axis #

7 SVON0 1
41 SVON1 2

Inside 8102 P1

Signal Connections 31

PCI-8102

The output circuit for the SVON signal is shown below:

3.10 General-Purpose Signal RDY
The RDY signals can be used as motor driver ready input or gen-
eral purpose input signals. The signal names, pin numbers, and
axis numbers are shown as follows:

The input circuit of RDY signal is shown in the following diagram:

3.11 Position Compare Output pin: CMP
The PCI-8102 provides 2 comparison output channels, CMP0 and
CMP1, which refer to axes 0 and 1 respectively. The comparison
output channel will generate a pulse signal when the encoder
counter reaches a pre-set value set by the user.

P1 Pin No Signal Name Axis #

11 RDY0 1
45 RDY1 2

P1Inside 8102

P1

VDD (+5V)

Inside 8102

32 Signal Connections

The CMP channel is located on P1. The signal names, pin num-
bers, and axis numbers are shown below:

The following wiring diagram is of the CMP on the first 2 axes:

Note: CMP trigger type can be set as normal low (rising
edge) or normal high (falling edge). Default setting is normal
high.
Refer to function_8102_set_trigger_comparator for details.

P1 Pin No Signal Name Axis #

30 CMP0 1
31 CMP1 2

From Motion
ASIC

Signal Connections 33

PCI-8102

3.12 Multi-Functional Input Pin: LTC/SD/PCS/CLR
The PCI-8102 provides 2 multi-functional input pins. Each of the 2
pins can be configured either as LTC(Latch) or SD(Slow down) or
PCS(Target position override) or CLR(Counter clear). To select the
pin function, please refer to 6.12. The default value is LTC and the
relavant functions are as follows:

I16 _8102_select_pin23_input(I16 card_id, U16 Select);

I16 _8102_select_pin57_input(I16 card_id, U16 Select);

The multi-functional input pins are on P1. The signal names, pin
numbers, and axis numbers are shown as follows:

The multi-functional input pin wiring diagram is as followed:

3.13 Simultaneously Start/Stop Signals STA and STP
The PCI-8102 provides STA and STP signals, which enable simul-
taneous start/stop of motions on multiple axes. The STA and STP
signals are on K1 and K2.

P1 Pin No Signal Name Axis #

23 LTC/SD/PCS/CLR_0 1
57 LTC/SD/PCS/CLR_1 2

EX24V+

VCC

To CPLD

DGND

R

P1 Inside 8102

Multi-Functional
Input

= 2.2K Ohm

HP0631

34 Signal Connections

The diagram below shows the onboard circuit. The STA and STP
signals of the two axes are tied together respectively.

The STP and STA signals are both input and output signals. To
operate the start and stop action simultaneously, both software
control and external control are needed. With software control, the
signals can be generated from any one of the PCI-8102. Users
can also use an external open collector or switch to drive the STA/
STP signals for simultaneous start/stop.

If there are two or more PCI-8102 cards, connect the K2 connector
on the previous card to K1 connector on the following card. The
K1 and K2 connectors on a same PCI-8102 are connected inter-
nally.

User can also use external start and stop signals to issue a cross-
card simultaneous motor operation. Just connect external start
and stop signals to STA and STP pins on the K1 connector of the
first PCI-8102 card.

Signal Connections 35

PCI-8102

3.14 General Purpose Digital Input/Output
The PCI-8102 provides 20 isolated digital input channels and 18
isolated digital output channels which were set into P1 and P2
connectors accordingly as following pin assignment table.::

Pin
No. Name Function

61 DIN0 Digital IN0
62 DIN1 Digital IN1
63 DIN2 Digital IN2
64 DIN3 Digital IN3
65 DOUT0 Digital Out0
66 DOUT1 Digital Out1

36 Signal Connections

3.14.1 Extended DSUB 37-pin Connector
16 digital inputs and 16 digital outputs are conveniently connected
with the included cable that connects to PCI-8102 P2 connector
and DSUB-37p.

Pin assignment of the DSUB-37p connector is as follows.

Pin Name Function Pin Name Function

1 EX_GND External Power
Ground 20 EX_GND External Power

Ground

2 DI0 Discrete Input
Channel 0 21 DO0 Discrete Output

Channel 0

Signal Connections 37

PCI-8102

1.Digital I/O type

3 DI1 Discrete Input
Channel 1 22 DO1 Discrete Output

Channel 1

4 DI2 Discrete Input
Channel 2 23 DO2 Discrete Output

Channel 2

5 DI3 Discrete Input
Channel 3 24 DO3 Discrete Output

Channel 3

6 DI4 Discrete Input
Channel 4 25 DO4 Discrete Output

Channel 4

7 DI5 Discrete Input
Channel 5 26 DO5 Discrete Output

Channel 5

8 DI6 Discrete Input
Channel 6 27 DO6 Discrete Output

Channel 6

9 DI7 Discrete Input
Channel 7 28 DO7 Discrete Output

Channel 7

10 DI8 Discrete Input
Channel 8 29 DO8 Discrete Output

Channel 8

11 DI9 Discrete Input
Channel 9 30 DO9 Discrete Output

Channel 9

12 DI10 Discrete Input
Channel 10 31 DO10 Discrete Output

Channel 10

13 DI11 Discrete Input
Channel 11 32 DO11 Discrete Output

Channel 11

14 DI12 Discrete Input
Channel 12 33 DO12 Discrete Output

Channel 12

15 DI13 Discrete Input
Channel 13 34 DO13 Discrete Output

Channel 13

16 DI14 Discrete Input
Channel 14 35 DO14 Discrete Output

Channel 14

17 DI15 Discrete Input
Channel 15 36 DO15 Discrete Output

Channel 15

18 EX_GND External Power
Ground 37 EX_GND External Power

Ground
19 VDD External +5V Power - - -

Pin Name Function Pin Name Function

38 Signal Connections

-N NPN Sinking Inputt:

-N NPN Sinking Output

 0.5V Max.

E5V

To CPLD

DI

R = 330

Inside 8102 P2

DGND
PS2805

VCC

35V @ 50mA Maximum
DO

From CPLD
EGND

Inside 8102 P2
VCC

PS2802

Operations 39

PCI-8102

4 Operations
This chapter describes the detail operation of the motion controller
card.

4.1 Classifications of Motion Controller
At the beginning of servo/stepper driver come to the world, people
start to talk about motion control widely instead of motor control.
They separate motor control into two layers: one is motor control
and the other is motion control. Motor control talks much about on
the PWM, power stage, closed loop, hall sensors, vector space,
and so on. Motion control talks much about on the speed profile
generating, trajectory following, multi-axes synchronization, and
coordinating.

4.1.1 Voltage Type Motion Control Interface
The interfaces between motion and motor control are changing
rapidly. From the early years, people use voltage signal as a com-
mand to motor controller. The amplitude of the signal means how
fast a motor rotating and the time duration of the voltage changes
means how fast a motor acceleration from one speed to the other
speed. Voltage signal as a command to motor driver is so called
“analog” type motion controller. It is much easier to integrate into
an analog circuit of motor controller but sometimes noise is a big
problem for this type of motion control. Besides, if people want to
do positioning control of a motor, the analog type motion controller
must have a feedback signal of position information and use a
closed loop control algorithm to make it possible. This increased
the complexity of motion control and not easy to use for a begin-
ner.

4.1.2 Pulse Type Motion Control Interface
The second interface of motion and motor control is pulses train
type. As a trend of digital world, pulse trains type represent a new
concept to motion control. The counts of pulses show how many
steps of a motor rotates and the frequency of pulses show how
fast a motor runs. The time duration of frequency changes repre-
sent the acceleration rate of a motor. Because of this interface,

40 Operations

users can control a servo or stepper motor more easier than ana-
log type for positioning applications. It means that motion and
motor control can be separated more easily by this way.

Both of these two interfaces need to take care of gains tuning. For
analog type position controller, the control loops are built inside
and users must tune the gain from the controller. For pulses type
position controller, the control loops are built outside on the motor
drivers and users must tune the gains on drivers.

For more than one axes’ operation, motion control seems more
important than motor control. In industrial applications, reliable is a
very important factor. Motor driver vendors make good perfor-
mance products and a motion controller vendors make powerful
and variety motion software. Integrated two products make our
machine go into perfect.

4.1.3 Network Type Motion Control Interface
Recently, there is a new control interface come into the world.
That’s network type motion controller. The command between
motor driver and motion controller is not analog or pulses signal
any more. It is a network packet which contents position informa-
tion and motor information. This type of controller is more reliable
because of digitized and packetized. Because a motion controller
must be real-time, the network must have real-time capacity
around a cycle time below 1 mini-second. This means that not
commercial network can do this job. It must have a specific net-
work like Mitsubishi SSCNET. The network may have opto-fiber
type to increase communication reliability.

4.1.4 Software Real-time Motion Control Kernel
For motion control kernel, there are three ways to accomplish it.
They are DSP-based, ASIC based, and software real-time based.

A motion control system needs an absolutely real-time control
cycle and the calculation on controller must provide a control data
at the same cycle. If not, the motor will not run smoothly. Many
machine makers will use PC’s computing power to do this. They
can use simply a feedback counter card and a voltage output or
pulse output card to make it. This method is very low-end and

Operations 41

PCI-8102

takes much software effort. For sure their real-time performance,
they will use a real-time software on the system. It increases the
complexity of the system too. But this method is the most flexible
way for a professional motion control designers. Most of these
methods are on NC machines.

4.1.5 DSP Based Motion Control Kernel
A DSP-based motion controller kernel solves real-time software
problem on computer. DSP is a micro-processer itself and all
motion control calculations can be done on it. There is no real-time
software problem because DSP has its own OS to arrange all the
procedures. There is no interruption from other inputs or context
switching problem like Windows based computer. Although it has
such a perfect performance on real-time requirements, its calcula-
tion speed is not as fast as PC’s CPU at this age. Besides, the
software interfacing between DSP based controller’s vendors and
users are not easy to use. Some controller vendors provide some
kind of assembly languages for users to learn and some controller
vendors provide only a handshake documents for users to use.
Both ways are not easy to use. DSP-based controllers provide a
better way than software kernel for machine makers to build they
applications.

4.1.6 ASIC Based Motion Control Kernel
An ASIC-base motion control kernel is a fair way between soft-
ware kernel and DSP kernel. It has no real-time problem because
all motion functions are done via ASIC. Users or controller’s ven-
dors just need to set some parameters which ASIC requires and
the motion control will be done easily. This kind of motion control
separates all system integration problems into 4 parts: Motor
driver’s performance, ASIC outputting profile, vendor’s software
parameters to ASIC, and users’ command to vendors’ software. It
makes motion controller co-operated more smoothly between
devices.

42 Operations

4.1.7 Compare Table of All Motion Control Types

4.1.8 PCI-8102’s Motion Controller Type
The PCI-8102 is an ASIC based, pulse type motion controller. We
make this card into three blocks: motion ASIC, PCI card, software
motion library. Users can access motion ASIC via our software
motion library under Windows 2000/XP/7, Linux, and RTX driver.
Our software motion library provides one-stop-function for control-
ling motors. All the speed parameters’ calculations are done via
our library.

For example, if users want to perform a one-axis point to point
motion with a trapezoidal speed profile, they just only fill the target
position, speed, and acceleration time in one function. Then the
motor will run as the profile. It takes no CPU’s resource because
every control cycle’s pulses generation is done by ASIC. The pre-
cision of target position depends on motor drivers’ closed loop
control performance and mechanical parts, not on motion control-
ler’s command because the motion controller is only responsible
for sending correct pulses counts via a desired speed profile. So it
is much easier for programmers, mechanical or electrical engi-
neers to find out problems.

4.2 Motion Control Modes
Not like motor control is only for positive or negative moving,
motion control make the motors run according to a specific speed
profile, path trajectory and synchronous condition with other axes.

Software ASIC DSP

Price Fair Cheap Expensive
Functionality Highest Low Normal
Maintenance Hard Easy Fair

Analog Pulses Network

Price High Low Normal
Signal Quality Fair Good Reliable
Maintenance Hard Easy Easy

Operations 43

PCI-8102

The following sections describe the motion control modes of this
motion controller could be performed.

4.2.1 Coordinate System
We use Cartesian coordinate and pulses for the unit of length. The
physical length depends on mechanical parts and motor’s resolu-
tion. For example, if users install a motor on a screw ball. The
pitch of screw ball is 10mm and the pulses needed for a round of
motor are 10,000 pulses. We can say that one pulse’s physical
unit is equal to 10mm/10,000p =1 micro-meter.

Just set a command with 15,000 pulses for motion controller if we
want to move 15mm. How about if we want to move 15.0001mmΔ
Don’t worry about that, the motion controller will keep the residue
value less than 1 pulse and add it to next command.

The motion controller sends incremental pulses to motor drivers. It
means that we can only send relative command to motor driver.
But we can solve this problem by calculating the difference
between current position and target position first. Then send the
differences to motor driver. For example, if current position is
1000. We want to move a motor to 9000. User can use an abso-
lute command to set a target position of 9000. Inside the motion
controller, it will get current position 1000 first then calculate the
difference from target position. It gets a result of +8000. So, the
motion controller will send 8000 pulses to motor driver to move the
position of 9000.

Sometimes, users need to install a linear scale or external
encoder to check machine’s position. But how do you to build this
coordinate system Δ If the resolution of external encoder is 10,000
pulses per 1mm and the motor will move 1mm if the motion con-
troller send 1,000 pulses, It means that when we want to move 1
mm, we need to send 1,000 pulses to motor driver then we will get
the encoder feedback value of 10,000 pulses. If we want to use an

44 Operations

absolute command to move a motor to 10,000 pulses position and
current position read from encoder is 3500 pulses, how many
pulses will it send to motor driver Δ The answer is (10000 – 3500)
/ (10,000 / 1,000)=650 pulses. The motion controller will calculate
it automatically if users set “move ratio” already. The “move ratio”
means the (feedback resolution/command resolution).

4.2.2 Absolute and Relative Position Move
In the coordinate system, we have two kinds command for users
to locate the target position. One is absolute and the other is rela-
tive. Absolute command means that user give the motion control-
ler a position, then the motion controller will move a motor to that
position from current position. Relative command means that user
give the motion controller a distance, then the motion controller
will move motor by the distance from current position. During the
movement, users can specify the speed profile. It means user can
define how fast and at what speed to reach the position.

4.2.3 Trapezoidal Speed Profile
Trapezodial speed profile means the acceleration/deceleration
area follows a 1st order linear velocity profile (constant accelera-
tion rate). The profile chart is shown as below:

 V
elocity

(pps)

StrVel

Tacc Tdec

MaxVel

StrVel

Time
(second)

Operations 45

PCI-8102

The area of the velocity profile represents the distance of this
motion. Sometimes, the profile looks like a triangle because the
desired distance from user is smaller than the area of given speed
parameters. When this situation happens, the motion controller
will lower the maximum velocity but keep the acceleration rate to
meet user’s distance requirement. The chart of this situation is
shown as below:

This kind of speed profile could be applied on velocity mode, posi-
tion mode in one axis or multi-axes linear interpolation and two
axes circular interpolation modes.

V
elocity

(pps)

StrVel

Tacc Tdec

MaxVel

StrVel

Time
(second)

46 Operations

4.2.4 S-Curve and Bell-Curve Speed Profile
S-curve means the speed profile in accelerate/decelerate area fol-
lows a 2nd order curve. It can reduce vibration at the beginning of
motor start and stop. In order to speed up the acceleration/decel-
eration during motion, we need to insert a linear part into these
areas. We call this shape as “Bell” curve. It adds a linear curve
between the upper side of s-curve and lower side of s-curve. This
shape improves the speed of acceleration and also reduces the
vibration of acceleration.

For a bell curve, we define its shape’s parameter as below:

Tacc: Acceleration time in second
Tdec: Deceleration time in second
StrVel: Starting velocity in PPS
MaxVel: Maximum velocity in PPS
VSacc: S-curve part of a bell curve in deceleration in PPS
VSdec: S-curve part of a bell curve in deceleration in PPS

Tacc Tdec

VSacc

VSacc VSdec

VSdec

Time
(Second)

Velocity
(PPS)

StrVel

MaxVel

Operations 47

PCI-8102

If VSacc or VSdec=0, it means acceleration or deceleration use
pure S-curve without linear part. The Acceleration chart of bell
curve is shown below:

The S-curve profile motion functions are designed to always pro-
duce smooth motion. If the time for acceleration parameters com-
bined with the final position don’t allow an axis to reach the
maximum velocity (i.e. the moving distance is too small to reach
MaxVel), then the maximum velocity is automatically lowered (see
the following Figure).

The rule is to lower the value of MaxVel and the Tacc, Tdec,
VSacc, VSdec automatically, and keep StrVel, acceleration, and
jerk unchanged. This is also applicable to Trapezoidal profile
motion.

This kind of speed profile could be applied on velocity mode, posi-
tion mode in one axis or multi-axes linear interpolation and two
axes circular interpolation modes.

48 Operations

4.2.5 Velocity Mode
Veloctiy mode means the pulse command is continuously output
until a stop command is issued. The motor will run without a target
position or desired distance unless it is stopped by other reasons.
The output pulse accelerates from a starting velocity to a specified
maximum velocity. It can be follow a linear or S-curve acceleration
shape. The pulse output rate is kept at maximum velocity until
another velocity command is set or a stop command is issued.
The velocity could be overridden by a new speed setting. Notice
that the new speed could not be a reversed speed of original run-
ning speed. The speed profile of this kind of motion is shown as
below:

4.2.6 One Axis Position Mode
Position mode means the motion controller will output a specific
amount of pulses which is equal to users’ desired position or dis-
tance. The unit of distance or position is pulse internally on the
motion controller. The minimum length of distance is one pulse.
But in PCI-8102, we provide a floating point function for users to
transform a physical length to pulses. Inside our software library,
we will keep those distance less than one pulse in register and
apply them to the next motion function. Besides positioning via
pulse counts, our motion controller provides three types of speed
profile to accomplish positioning. There are 1st order trapezoidal,
2nd order S-curve, and mixed bell curve. Users can call respective
functions to perform that. The following char shows the relation-
ship between distance and speed profile. We use trapezoidal
shape to show it.

Operations 49

PCI-8102

The distance is the area of the V-t diagram of this profile.

4.2.7 Two Axes Linear Interpolation Position Mode
“Interpolation between multi-axes” means these axes start simul-
taneously, and reach their ending points at the same time. Linear
means the ratio of speed of every axis is a constant value.
Assume that we run a motion from (0,0) to (10,4). The linear inter-
polation results are shown as below.

 V
elocity

(pps)

StrVel

Tacc Tdec

MaxVel

StrVel

Time
(second)

Distance

50 Operations

The pulses output from X or Y axis remains 1/2 pulse difference
according to a perfect linear line. The precision of linear interpola-
tion is shown as below:

If users want to stop an interpolation group, just call a stop func-
tion on first axis of the group.

As in the diagram below, 2-axis linear interpolation means to move
the XY position from P0 to P1. The 2 axes start and stop simulta-
neously, and the path is a straight line.

The speed ratio along X-axis and Y-axis is (ΔX: ΔY), respectively,
and the vector speed is:

When calling 2-axis linear interpolation functions, the vector speed
needs to define the start velocity, StrVel, and maximum velocity,
MaxVel.

4.2.8 Two Axes Circular Interpolation Mode
Circular interpolation means XY axes simultaneously start from ini-
tial point, (0,0) and stop at end point,(1800,600). The path

Operations 51

PCI-8102

between them is an arc, and the MaxVel is the tangential speed.
Notice that if the end point of arc is not at a proper position, it will
move circularly without stopping.

The motion controller will move to the final point user desired even
this point is not on the path of arc. But if the final point is not at the
location of the shadow area of the following graph, it will run circu-
larly without stopping.

X

Y

(0,0) Center
(1000,0)

(1800,600)

52 Operations

The command precision of circular interpolation is shown below.
The precision range is at radius ±1/2 pulse.

4.2.9 Continuous Motion
Continuous motion means a series of motion command or position
can be run continuously. Users can set a new command right after
previous one without interrupting it. The motion controller can
make it possible because there are three command buffers (pre-
registers) inside.

When first command is executing, users can set second command
into first buffer and third command into second buffer. Once the
first command is finished, the motion controller will push the sec-
ond command to the executing register and the third command to
first buffer. Now, the second buffer is empty and user can set the
4th command into 2nd buffer. Normally, if users have enough time
to set a new command into 2nd buffer before executing register is
finished, the motion can run endlessly. The following diagram
shows this architecture of continuous motion.

Besides position command, the speed command should be set
correctly to perform a speed continuous profile. For the following
example, there are three motion command of this continuous

Operations 53

PCI-8102

motion. The second one has high speed than the others. The
interconnection of speed between these three motion functions
should be set as the following diagram:

If the 2nd command’s speed value is lower than the others, the
settings would be like as following diagram:

For 2-axis continuous arc interpolation is the same concept. User
can set the speed matched between two command’s speed set-
ting.

54 Operations

If the INP checking is enabled, the motion will have some delayed
between each command in buffers. INP check enabled make the
desired point be reached but reduce the smoothing between each
command. If users don’t need this delay and meed the smoothing,
please turn INP checking off.

4.2.10 Home Return Mode
Home return means searching a zero position point on the coordi-
nate. Sometimes, users use a ORG, EZ or EL pin as a zero posi-
tion on the coordinate. At the beginning of machine power on, the
program needs to find a zero point of this machine. Our motion
controller provides a home return mode to make it.

We have many home modes and each mode contents many con-
trol phases. All of these phases are done by ASIC. No software
efforts or CPU loading will be taken. After home return is finished,
the target counter will be reset to zero at the desired condition of
home mode. For example, a raising edge when ORG input. Some-
times, the motion controller will still output pulses to make
machine show down after resetting the counter. When the motor
stops, the counter may not be at zero point but the home return

Operations 55

PCI-8102

procedure is finished. The counter value you see is a reference
position from machine's zero point already.

The following figures show the various home modes: R means
counter reset (command and position counter). E means ERC
signal output.

56 Operations

Home mode=0: (ORG Turn ON then reset counter)

Home mode=1: (Twice ORG turn ON then reset counter)

Operations 57

PCI-8102

Home mode=2: (ORG ON then Slow down to count EZ num-
bers and reset counter)

Home mode=3: (ORG ON then count EZ numbers and reset
counter)

58 Operations

Home mode=4: (ORG On then reverse to count EZ number
and reset counter)

Home mode=5: (ORG On then reverse to count EZ number
and reset counter, not using FA Speed)

Operations 59

PCI-8102

Home mode=6: (EL On then reverse to leave EL and reset
counter)

Home mode=7: (EL On then reverse to count EZ number and
reset counter)

Home mode=8: (EL On then reverse to count EZ number and
reset counter, not using FA Speed)

60 Operations

Home mode=9: (ORG On then reverse to zero position, an
extension from mode 0)

Home mode=10: (ORG On then counter EZ and reverse to
zero position, an extension from mode 3)

Operations 61

PCI-8102

Home mode=11: (ORG On then reverse to counter EZ and
reverse to zero position, an extension from mode 5)

Home mode=12: (EL On then reverse to count EZ number and
reverse to zero position, an extension from mode 8)

4.2.11 Home Search Function
This mode is used to add auto searching function on normal home
return mode described in previous section no matter which posi-
tion the axis is. The following diagram is shown the example for
home mode 2 via home search function. The ORG offset can’t be
zero. Suggested value is the double length of ORG area.

62 Operations

4.2.12 Manual Pulser Function
Manual pulser is a device to generate pulse trains by hand. The
pulses are sent to motion controller and re-directed to pulse output
pins. The input pulses could be multiplied or divided before send-
ing out.

The motion controller receives two kinds of pulse trains from man-
ual pulser device: CW/CCW and AB phase. If the AB phase input
mode is selected, the multiplier has additional selection of 1, 2, or
4.

The following figure shows pulser ratio block diagram.

Operations 63

PCI-8102

4.2.13 Simultaneous Start Function
Simultaneous motion means more than one axis can be started by
a Simultaneous signal which could be external or internal signals.
For external signal, users must set move parameters first for all
axes then these axes will wait an extern start/stop command to
start or stop. For internal signal, the start command could be from
a software start function. Once it is issued, all axes which are in
waiting synchronous mode will start at the same time.

4.2.14 Speed Override Function
Speed override means that users can change command’s speed
during the operation of motion. The change parameter is a per-
centage of original defined speed. Users can define a 100% speed
value then change the speed by percentage of original speed
when motion is running. If users didn’t define the 100% speed
value. The default 100% speed is the latest motion command’s
maximum speed. This function can be applied on any motion func-
tion. If the running motion is S-curve or bell curve, the speed over-
ride will be a pure s-curve. If the running motion is t-curve, the
speed override will be a t-curve.

64 Operations

4.2.15 Position Override Function
Position override means that when users issue a positioning com-
mand and want to change its target position during this operation.
If the new target position is behind current position when override
command is issued, the motor will slow down then reverse to new
target position. If the new target position is far away from current
position on the same direction, the motion will remain its speed
and run to new target position. If the override timing is on the
deceleration of current motion and the target position is far away
from current position on the same direction, it will accelerate to
original speed and run to new target position. The operation exam-
ples are shown as below. Notice that if the new target position’s
relative pulses are smaller than original slow down pulses, this
function can’t work properly.

Operations 65

PCI-8102

4.3 Motor Driver Interface
We provide several dedicated I/Os which can be connected to
motor driver directly and have their own functions. Motor drivers
have many kinds of I/O pins for external motion controller to use.
We classify them to two groups. One is pulse I/O signals including
pulse command and encoder interface. The other is digital I/O sig-
nals including servo ON, alarm, INP, servo ready, alarm reset and
emergency stop inputs. The following sections will describe the
functions these I/O pins.

4.3.1 Pulse Command Output Interface
The motion controller uses pulse command to control servo/step-
per motors via motor drivers. Please set the drivers to position
mode which can accept pulse trains as position command. The
pulse command consists of two signal pairs. It is defined as OUT
and DIR pins on connector. Each signal has two pins as a pair for
differential output. There are two signal modes for pulse output
command: (1) single pulse output mode (OUT/DIR), and (2) dual
pulse output mode (CW/CCW type pulse output). The mode must

66 Operations

be the same as motor driver. The modes vs. signal type of OUT
and DIR pins are listed in the table below:

Single Pulse Output Mode (OUT/DIR Mode)
In this mode, the OUT pin is for outputing command pulse chain.
The numbers of OUT pulse represent distance in pulse. The fre-
quency of the OUT pulse represents speed in pulse per second.
The DIR signal represents command direction of positive (+) or
negative (-). The diagrams below show the output waveform. It is
possible to set the polarity of the pulse chain.

Mode Output of OUT
pin

Output of DIR
pin

Dual pulse output (CW/CCW)
Pulse signal in
plus (or CW)

direction

Pulse signal in
minus (or CCW)

direction

Single pulse output (OUT/DIR) Pulse signal Direction signal
(level)

Operations 67

PCI-8102

Dual Pulse Output Mode (CW/CCW Mode)
In this mode, the waveform of the OUT and DIR pins represent
CW (clockwise) and CCW (counter clockwise) pulse output
respectively. The numbers of pulse represent distance in pulse.
The frequency of the pulse represents speed in pulse per sec-
ond. Pulses output from the CW pin makes the motor move in
positive direction, whereas pulse output from the CCW pin
makes the motor move in negative direction. The following dia-

68 Operations

gram shows the output waveform of positive (+) commands
and negative (-) commands.

The command pulses are counted by a 28-bit command counter.
The command counter can store a value of total pulses outputting
from controller.

4.3.2 Pulse Feedback Input Interface
Our motion controller provides one 28-bit up/down counter of each
axis for pulse feedback counting. This counter is called position
counter. The position counter counts pulses from the EA and EB
signal which have plus and minus pins on connector for differential
signal inputs. It accepts two kinds of pulse types. One is dual
pulses input (CW/CCW mode) and the other is AB phase input.
The AB phase input can be multiplied by 1, 2 or 4. Multiply by 4 AB
phase mode is the most commonly used in incremental encoder
inputs.

For example, if a rotary encoder has 2000 pulses per rotation,
then the counter value read from the position counter will be 8000
pulses per rotation when the AB phase is multiplied by four.

If users don’t use encoder for motion controller, the feedback
source for this counter must be set as pulse command output or
the counter value will always be zero. If it is set as pulse command
output, users can get the position counter value from pulse com-

Operations 69

PCI-8102

mand output counter because the feedback pulses are internal
counted from command output pulses.

The following diagrams show these two types of pulse feedback
signal.

The pattern of pulses in this mode is the same as the Dual Pulse
Output Mode in the Pulse Command Output section except that
the input pins are EA and EB.

In this mode, pulses from EA pin cause the counter to count up,
whereas EB pin caused the counter to count down.

90° phase difference signals Input Mode (AB phase Mode)

In this mode, the EA signal is a 90° phase leading or lagging in
comparison with the EB signal. “Lead” or “lag” of phase difference
between two signals is caused by the turning direction of the
motor. The up/down counter counts up when the phase of EA sig-
nal leads the phase of EB signal.

The following diagram shows the waveform.

The index input (EZ) signal is as the zero reference in linear or
rotary encoder. The EZ can be used to define the mechanical zero

70 Operations

position of the mechanism. The logic of signal must also be set
correctly to get correct result.

4.3.3 In Position Signal
The in-position signal is an output signal from motor driver. It tells
motion controllers a motor has been reached a position within a
predefined error. The predefined error value is in-position value.
Most motor drivers call it as INP value. After motion controller
issues a positioning command, the motion busy status will keep
true until the INP signal is ON. Users can disable INP check for
motion busy flag. If it is disabled, the motion busy wll be FALSE
when the pulses command is all sent.

4.3.4 Servo Alarm Signal
The alarm signal is an output signal from motor driver. It tells
motion controller that there has something error inside servo
motor or driver. Once the motion controller receives this signal, the
pulses command will stop sending and the status of ALM signal
will be ON. The reasons of alarm could be servo motor’s over
speed, over current, over loaded and so on. Please check motor
driver’s manual about the details.

The logic of alarm signal must be set correctly. If the alarm logic’s
setting is not the same as motor driver’s setting, the ALM status

Operations 71

PCI-8102

will be always ON and the pulse command can never be output-
ted.

4.3.5 Error Clear Signal
The ERC signal is an output from the motion controller. It tells
motor driver to clear the error counter. The error counter is
counted from the difference of command pulses and feedback
pulses. The feedback position will always have a delay from the
command position. It results in pulse differences between these
two positions at any moment. The differences are shown in error
counter. Motor driver uses the error counter as a basic control
index. The large the error counter value is, the faster the motor
speed command will be set. If the error counter is zero, it means
that zero motor speed command will be set.

At following four situations, the ERC signal will be outputted auto-
matically from motion controller to motor driver in order to clear
error counter at the same time.

1. Home return is complete

2. The end-limit switch is touched

3. An alarm signal is active

4. An emergency stop command is issued

4.3.6 Servo ON/OFF Switch
The servo on/off switch is a general digital output signal on motion
controller. We define it as SVON pin on the connector. It can be
used for switching motor driver’s controlling state. Once it is turned
on, the motor will be held because the control loop of driver is
active. Be careful that when the axis is vertically installed and the
servo signal is turned off, the axis will be in uncontrolled state.
Some situations like servo alarm and emergency signal ON will
result in the same trouble.

4.3.7 Servo Ready Signal
The servo ready signal is a general digital input on motion control-
ler. It has no relative purpose to motion controller. Users can con-
nect this signal to motor driver’s RDY signal to check if the motor

72 Operations

driver is in ready state. It lets users to check something like the
motor driver’s power has been input or not. Or users can connect
this pin as a general input for other purpose. It doesn’t affect
motion control.

4.3.8 Servo Alarm Reset Switch
The servo driver will raise an alarm signal if there is something
wrong inside the servo driver. Some alarm situations like servo
motor over current, over speed, over loading and so on. Power
reset can clear the alarm status but users usually don’t want to
power off the servo motor when operating. There is one pin from
servo driver for users to reset the alarm status.Our motion control-
ler provides one general output pin for each axis. Users can use
this pin for resetting servo alarm status.

4.4 Mechanical Switch Interface
We provide some dedicated input pins for mechanical switches
like original switch (ORG), plus and minus end-limit switch (±EL),
slow down switch (SD), positioning start switch (PCS), counter
latch switch (LTC), emergency stop input (EMG) and counter clear
switch (CLR). These switches’ response time is very short, only a
few ASIC clock times. There is no real-time problem when using
these signals. All functions are done by motion ASIC. The soft-
ware can just do nothing and only need to wait the results.

4.4.1 Original or Home Signal
Our controller provides one original or home signal for each axis.
This signal is used for defining zero position of this axis. The logic
of this signal must be set properly before doing home procedure.
Please refer to home mode section for details.

4.4.2 End-Limit Switch Signal
The end-limit switches are usually installed on both ending sides
of one axis. We must install plus EL at the positive position of the
axis and minus EL at the negative position of the axis. These two
signals are for safety reason. If they are installed reversely, the
protection will be invalid. Once the motor’s moving part touches

Operations 73

PCI-8102

one of the end-limit signal, the motion controller will stop sending
pulses and output an ERC signal. It can prevent machine crash
when miss operation.

4.4.3 Slow Down Switch
The slow down signals are used to force the command pulse to
decelerate to the starting velocity when it is active. This signal is
used to protect a mechanical moving part under high speed move-
ment toward the mechanism’s limit. The SD signal is effective for
both plus and minus directions.

4.4.4 Positioning Start switch
The positioning start switch is used to move a specific position
when it is turned on. The function is shown as below.

4.4.5 Counter Clear switch
The counter clear switch is an input signal which makes the coun-
ters of motion controller to reset. If users need to reset a counter
according to external command, use this pin as controlling source.

4.4.6 Counter Latch Switch
The counter latch switch is an input signal which makes counter
value to be kept into a register when this input active. If users need
to know counter value at the active moment of one input, they can
connect this pin to catch that.

74 Operations

4.4.7 Emergency Stop Input
Our motion controller provides a global digital input for emergency
situation. Once the input is turned on, our motion controller will
stop all axes’ motion immediately to prevent machine’s damage.
Usually, users can connect an emergency stop button to this input
on their machine. We suggest this input as normal closed type for
safety.

Operations 75

PCI-8102

4.5 Counters
There are four counters for each axis of this motion controller.
They are described in this section.

Command position counter: counts the number of output pulses

Feedback position counter: counts the number of input pulses

Position error counter: counts the error between command and
feedback pulse numbers.

General purpose counter: The source can be configured as com-
mand position, feedback position, manual pulser, or half of ASIC
clock.

Target position recorder: A software-maintained target position
value of latest motion command.

4.5.1 Command Position Counter
The command position counter is a 28-bit binary up/down counter.
Its input source is the output pulses from the motion controller. It
provides the information of the current command position. It is
useful for debugging the motion system.

Our motion system is an open loop type. The motor driver receives
pulses from motion controller and drive the motor to move. When
the driver is not moving, we can check this command counter and
see if there is an update value on it. If it is, it means that the pulses
have seen sent and the problem could be on the motor driver. Try
to check motor driver’s pulse receiving counter when this situation
is happened.

The unit of command counter is in pulse. The counter value could
be reset by a counter clear signal or home function completion.
Users can also use a software command counter setting function
to reset it.

4.5.2 Feedback Position Counter
The feedback position counter is a 28-bit binary up/down counter.
Its input source is the input pulses from the EA/EB pins. It counts
the motor position from motor’s encoder output. This counter

76 Operations

could be set from a source of command position for an option
when no external encoder inputs.

The command output pulses and feedback input pulses will not
always be the same ratio in mini-meters. Users must set the ratio if
these two pulses are not 1:1.

Because our motion controller is not a closed-loop type, the feed-
back position counter is just for reference after motion is moving.
The position closed-loop is done by servo motor driver. If the servo
driver is well tuned and the mechanical parts are well assembled,
the total position error will remain in acceptable range after motion
command is finished.

4.5.3 Command and Feedback Error Counter
The command and feedback error counter is used to calculate the
error between the command position and the feedback position.
The value is calculated from command subtracting feedback posi-
tion.

If the ratio between command and feedback is not 1:1, the error
counter is meaningless.

This counter is a 16-bit binary up/down counter.

4.5.4 General Purpose Counter
The source of general purpose counter could be any of the follow-
ing:

1. Command position output – the same as a command
position counter

2. Feedback position input – the same as a feedback posi-
tion counter

3. Manual Pulser input – Default setting

4. Clock Ticks – Counter from a timer about 9.8 MHz

4.5.5 Target Position Recorder
The target position recorder is used for providing target position
information. It is used in continuous motion because motion con-
troller need to know the previous motion command’s target posi-

Operations 77

PCI-8102

tion and current motion command’s target position in order to
calculate relative pulses of current command then send results
into pre-register. Please check if the target position is the same
with current command position before continuous motion. Espe-
cially after the home function and stop function.

4.6 Comparators
There are 5 counter comparators of each axis. Each comparator
has dedicated functions. They are:

1. Positive soft end-limit comparator to command counter

2. Negative soft end-limit comparator to command counter

3. Command and feedback error counter comparator

4. General comparator for all counters

5. Trigger comparator for all command and feedback coun-
ters

4.6.1 Soft End-Limit Comparators
There are two comparators for end-limit function of each axis. We
call them for the soft end-limit comparators. One is for plus or pos-
itive end-limit and the other is for minus or negative end-limit. The
end-limit is to prevent machine crash when over traveling. We can
use the soft limit instead of a real end-limit switch. Notice that
these two comparators only compare the command position coun-
ter. Once the command position is over the limited set inside the
positive or negative comparators, it will stop moving as it touches
the end-limit switch.

4.6.2 Command and Feedback Error Counter Compara-
tors
This comparator is only for command and feedback counter error.
Users can use this comparator to check if the error is too big. It
can be set a action when this condition is met. The actions include
generating interrupt, immediately stop, and deceleration to stop.

78 Operations

4.6.3 General Comparator
The general comparator let users to choose the source to com-
pare. It could be chosen from command, feedback position coun-
ter, error counter or general counter. The compare methods could
be chosen by equal, greater than or less than with directional or
directionless. Also the action when condition is met can be chosen
from generating interrupt, stop motion or others.

4.6.4 Trigger Comparator
The trigger comparator is much like general comparator. It has an
additional function, generating a trigger pulse when condition is
met. Once the condition is met, the CMP pin on the connector will
output a pulse for specific purpose like triggering a camera to
catch picture. Not all of axes have this function. It depends on the
existence of CMP pin of the axis. The following diagram shows the
application of triggering.

In this application, the table is controlled by the motion command,
and the CCD Camera is controlled by CMP pin. When the compar-
ing position is reached, the pulse will be outputted and the image
is captured. This is an on-the-fly image capture. If users want to
get more images during the motion path, try to set a new compar-

t

v

1 2 3 4 5 6
CCD

Camera

t

v

1 2 3 4 5 6
CCD

Camera

Trigger Output

Operations 79

PCI-8102

ing point right after previous image is captured. It can achieve con-
tinuous image capturing by this method.

4.7 Other Motion Functions
We provide many other functions on the motion controller. Such as
backlash compensation, slip correction, vibration restriction,
speed profile calculation and so on. The following sections will
describe these functions.

4.7.1 Backlash Compensation and Slip Corrections
The motion controller has backlash and slip correction functions.
These functions output the number of command pulses in FA
speed. The backlash compensation is performed each time when
the direction changes on operation. The slip correction function is
performed before a motion command, regardless of the direction.
The correction amount of pulses can be set by function library.

4.7.2 Vibration Restriction Function
The method of vibration restriction of the motion controller is by
adding one pulse of reverse direction and then one pulse of for-
ward direction shortly after completing a motion command. The
timing of these two dummy pulses are shown below: (RT indicates
reverse time and FT forward time)

80 Operations

4.7.3 Speed Profile Calculation Function
Our motion function needs several speed parameters from users.
Some parameters are conflict in speed profile. For example, if
users input a very fast speed profile and a very short distance to
motion function, the speed profile is not exist for these parame-
ters. At this situation, motion library will keep the acceleration and
deceleration rate. It tries to lower the maximum speed from users
automatically to reform a speed profile feasible. The following dia-
gram shows this concept.

Our motion library has a series of functions to know the actual
speed profile of the command from users.

Distance insufficient

Operations 81

PCI-8102

4.8 Interrupt Control
The motion controller can generate an interrupt signal to the host
PC. It is much useful for event-driven software application. Users
can use this function _8102_int_control() to enable ir disable the
interrupt service.

There are three kinds of interrupt sources on PCI-8102. One is
motion interrupt source and the other is error interrupt source and
another is GPIO interrupt sources. Motion and GPIO interrupt
sources can be maskable but error interrupt sources can’t. Motion
interrupt sources can be maskable by
_8102_set_motion_int_factor(). Its mask bits are shown as follow-
ing table:

Motion Interrupt Source Bit Settings

Bit Description

0 Normally Stop
1 Next command in buffer starts

2 Command pre-register 2 is empty and allow new command to
write

3 0
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 +Soft limit or comparator 1 is ON
9 -Soft limit or comparator 2 is ON

10 Error comparator or comparator 3 is ON
11 General comparator or comparator 4 is ON
12 Trigger comparator or comparator 5 is ON
13 Counter is reset by CLR input
14 Counter is latched by LTC input
15 Counter is latched by ORG Input
16 SD input turns on
17 0
18 0

82 Operations

The error interrupt sources are non-maskable but the error num-
ber of situation could be get from _8102_wait_error_interrupt()’s
return code if it is not timeout.

Error Interrupt return codes

The GPIO interrupt sources are maskable. The mask bits table is
shown below:

19 CSTA input or _8102_start_move_all() turns on
20~31 0

Value Description

0 +Soft Limit is ON and axis is stopped
1 -Soft Limit is ON and axis is stopped
2 Comparator 3 is ON and axis is stopped
3 General Comparator or comparator 4 is ON and axis is stopped
4 Trigger Comparator or comparator 5 is ON and axis is stopped
5 +End Limit is on and axis is stopped
6 -End Limit is on and axis is stopped
7 ALM is happened and axis is stop
8 CSTP is ON or _8102_stop_move_all is on and axis is stopped
9 CEMG is on and axis is stopped
10 SD input is on and axis is slowed down to stop
11 0
12 Interpolation operation error and stop
13 axis is stopped from other axis’s error stop
14 Pulse input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error but axis is not stopped
17 Pulse input signal error but axis is not stopped

11~31 0

Bit Description

Operations 83

PCI-8102

GPIO Interrupt Source Bit Settings (1=Enable,0=Disable)

The steps for using interrupts:

1. Use _8102_int_control(CARD_ID, Enable=1/Disable=0);

2. Set interrupt sources for Event or GPIO interrupts.

3. _8102_set_motion_int_facor(AXIS0, 0x01); // Axis0 nor-
mally stop

4. _8102_set_gpio_int_factor(CARD0, 0x01); // DI0 falling
edge

5. _8102_wait_motion_interrupt(AXIS0, 0x01, 1000) // Wait
1000ms for normally stop interrupt

6. _8102_wait_gpio_interrupt(CARD0, 0x01, 1000) // Wait
1000ms for DI0 falling edge interrupt

7. I16 ErrNo=_8102_wait_error_interrupt(AXIS0, 2000); //
Wait 2000ms for error interrupts

Bit Description

0 DI0 falling edge
1 DI1 falling edge
2 DI2 falling edge
3 DI3 falling edge
4 DI0 raising edge
5 DI1 raising edge
6 DI2 raising edge
7 DI3 raising edge
8 Pin23 input interrupt
9 Pin57 input interrupt

10 Pin23/57 interrupt mode selection (0=falling, 1=raising)
11~14 0

15 GPIO interrupt switch (Always=1)

84 Operations

4.9 Multiple Card Operation
The motion controller allows more than one card in one system.
Since the motion controller is plug-and-play compatible, the base
address and IRQ setting of the card are automatically assigned by
the PCI BIOS at the beginning of system booting. Users don’t
need and can’t change the resource settings.

When multiple cards are applied to a system, the number of card
must be noted. The card number depends on the card ID switch
setting on the board. The axis number is depends on the card ID.
For example, if three motion controller cards are plugged in to PCI
slots, and the corresponding card ID is set, then the axis number
on each card will be:

Notice that if there has the same card ID on multiple cards, the
function will not work correctly.

card_id. Physical
Axis Axis No

0
0 0
1 1

1
0 2
1 3

2
0 4
1 5

X 0 X

MotionCreatorPro 85

PCI-8102

5 MotionCreatorPro
After installing the hardware (Chapters 2 and 3), it is necessary to
correctly configure all cards and double check the system before
running. This chapter gives guidelines for establishing a control
system and manually testing the PCI-8102 cards to verify correct
operation. The MotionCreatorPro software provides a simple yet
powerful means to setup, configure, test, and debug a motion con-
trol system that uses PCI-8102 cards.

Note that MotionCreatorPro is only available for Windows 2000/
XP/7 with a screen resolution higher than 1024x768. It does not
run under a DOS environment.

5.1 Execute MotionCreatorPro
After installing the software drivers for the 8102 in Windows 2000/
XP/7, the MotionCreatorPro program can be located at <chosen
path >\PCI-Motion\MotionCreatorPro. To execute the program,
double click on the executable file or use Start>Program
Files>PCI-Motion>MotionCreatorPro.

5.2 About MotionCreatorPro
Before Running MotionCreatorPro, the following issues should be
kept in mind.

1. MotionCreatorPro is a program written in VB.NET 2003,
and is available only for Windows 2000/XP/7 with a
screen resolution higher than 1024x768. It cannot be run
under DOS.

2. MotionCreatorPro allows users to save settings and con-
figurations for PCI-8102 cards. Saved configurations will
be automatically loaded the next time MotionCreatorPro
is executed. Two files, 8102.ini and 8102MC.ini, in the

86 MotionCreatorPro

windows root directory are used to save all settings and
configurations.

3. To duplicate configurations from one system to another,
copy 8102.ini and 8102MC.ini into the windows root
directory.

4. If multiple PCI-8102 cards use the same MotionCreator-
Pro saved configuration files, the DLL function call
_8102_config_from_file() can be invoked within a user
developed program. This function is available in a DOS
environment as well.

MotionCreatorPro 87

PCI-8102

5.3 MotionCreatorPro Form Introduction

5.3.1 Main Menu
The main menu appears after running MotionCreatorPro. It is used
to:

88 MotionCreatorPro

5.3.2 Select Menu
The select menu appears after running MotionCreatorPro. It is
used to:

MotionCreatorPro 89

PCI-8102

5.3.3 Card Information Menu
In this menu, it show some Information about this card.

90 MotionCreatorPro

5.3.4 Configuration Menu
In this menu, users can configure ALM, INP, ERC, EL, ORG, and
EZ.

MotionCreatorPro 91

PCI-8102

1. ALM Logic and Response mode: Select logic and
response modes of ALM signal. The related function call
is _8102_set_alm().

2. INP Logic and Enable/Disable selection: Select logic,
and Enable/ Disable the INP signal. The related function
call is _8102_set_inp()

3. ERC Logic and Active timing: Select the Logic and
Active timing of the ERC signal. The related function call
is _8102_set_erc().

4. EL Response mode: Select the response mode of the
EL signal. The related function call is
_8102_set_limit_logic ().

5. ORG Logic: Select the logic of the ORG signal. The
related function call is _8102_set_home_config().

6. EZ Logic: Select the logic of the EZ signal. The related
function call is _8102_set_home_config().

7. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8102.ini And
8102MC.ini.
Close: Close the menu.

92 MotionCreatorPro

In this menu, users can configure LTC, SD, PCS, and
Select_Input.

MotionCreatorPro 93

PCI-8102

1. LTC Logic: Select the logic of the LTC signal. The related
function call is _8102_set_ltc_logic().

2. LTC latch_source: Select the logic of the latch_source
signal. The related function call is
_8102_set_latch_source ().

3. SD Configuration: Configure the SD signal. The related
function call is _8102_set_sd().

4. PCS Logic: Select the logic of the SelectNo signal. The
related function call is _8102_set_pcs_logic().

5. pin23_Select Axis X: Select the configurations of the
Axis X. The related function call is
_8102_select_pin23_input.

6. pin57_Select Axis Y: Select the configurations of the
Axis Y. The related function call is
_8102_select_pin57_input.

7. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8102.ini And
8102MC.ini.
Close: Close the menu.

94 MotionCreatorPro

In this menu, users can configure pulse input/output and move
ratio and INT factor.

MotionCreatorPro 95

PCI-8102

1. Pulse Output Mode: Select the output mode of the pulse
signal (OUT/ DIR). The related function call is
_8102_set_pls_outmode().

2. Pulse Input: Sets the configurations of the Pulse input
signal(EA/EB). The related function calls are
_8102_set_pls_iptmode(), _8102_set_feedback_src().

3. INT Factor: Select factors to initiate the event int. The
related function call is _8102_set_int_factor().

4. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8102.ini And
8102MC.ini.
Close: Close the menu.

96 MotionCreatorPro

5.3.5 Single Axis Operation Menu
In this menu, users can change the settings a selected axis,
including velocity mode motion, preset relative/absolute motion,
manual pulse move, and home return.

1. Position:

Command: displays the value of the command counter.
The related function is _8102_get_command().
Feedback: displays the value of the feedback position
counter. The related function is _8102_get_position()
Pos Error: displays the value of the position error coun-
ter. The related function is _8102_get_error_counter().
Target Pos: displays the value of the target position
recorder. The related function is
_8102_get_target_pos().

1

2

3

4

5

6

7

8 9 10

11

12

13
14

15 16

17 18

19

20

21

MotionCreatorPro 97

PCI-8102

2. Position Reset: clicking this button will set all positioning
counters to a specified value. The related functions are:

 _8102_set_position()
 _8102_set_command()
 _8102_reset_error_counter()
 _8102_reset_target_pos()

3. Motion Status: Displays the returned value of the
_8102_motion_done function. The related function is
_8102_motion_done().

4. INT Status:

int_factor bit no: Set int_factor bit.
Normal INT: display of Normal INT status. The related
function is _8102_wait_motion_interrupt ().
Error INT: display of Error INT status. The related func-
tion is _8102_wait_error_interrupt ().
GPIO INT: display of GPIO INT status. The related func-
tion is _8102_wait_gpio_interrupt ().

5. Velocity: The absolute value of velocity in units of PPS.
The related function is _8102_get_current_speed().

6. Show Velocity Curve Button: Clicking this button will
open a window showing a velocity vs. time curve. In this
curve, every 100ms, a new velocity data point will be
added. To close it, click the same button again. To clear
data, click on the curve.

98 MotionCreatorPro

7. Operation Mode: Select operation mode.

Absolute Mode: “Position1” and “position2” will be used
as absolution target positions for motion. The related
functions are _8102_start_ta_move(),
_8102_start_sa_move().
Relative Mode: “Distance” will be used as relative dis-
placement for motion. The related function is
_8102_start_tr_move(), _8102_start_sr_move().
Cont. Move: Velocity motion mode. The related function
is _8102_tv_move(), _8102_start_sv_move().
Manual Pulser Move: Manual Pulse motion. Clicking this
button will invoke the manual pulse configuration win-
dow.

Home Mode: Home return motion. Clicking this button
will invoke the home move configuration window. The
related function is _8102_set_home_config().If the

MotionCreatorPro 99

PCI-8102

check box “ATU” is checked, it will execute auto homing
when motion starts.

ERC Output: Select if the ERC signal will be sent when
home move completes.
EZ Count: Set the EZ count number, which is effective
on certain home return modes.
Mode: Select the home return mode. There are 13
modes available.
Home Mode figure: The figure shown explains the
actions of the individual home modes.
Close: Click this button close this window.

8. Position: Set the absolute position for “Absolute Mode.”
It is only effective when “Absolute Mode” is selected.

9. Distance: Set the relative distance for “Relative Mode.” It
is only effective when “Relative Mode” is selected.

10.Repeat Mode: When “On” is selected, the motion will
become repeat mode (forward<->backward or
position1<->position2). It is only effective when “Relative
Mode” or “Absolute Mode” is selected.

100 MotionCreatorPro

11.Vel. Profile: Select the velocity profile. Both Trapezoidal
and S-Curve are available for “Absolute Mode,” “Relative
Mode,” and “Cont. Move.”

12.FA Speed/ATU: Sets the configurations of the FA Speed.
The related function calls are _8102_set_fa_speed().If
the check box “ATU” is checked, it will execute auto
homing when motion starts.

13.Motion Parameters: Set the parameters for single axis
motion. This parameter is meaningless if “Manual Pulser
Move” is selected, since the velocity and moving dis-
tance is decided by pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS. In “Absolute Mode” or “Relative Mode,” only the
value is effective. For example, -100.0 is the same as
100.0. In “Cont. Move,” both the value and sign are
effective. –100.0 means 100.0 in the minus direction.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS. In “Absolute Mode” or “Relative Mode,”
only the value is effective. For example, -5000.0 is the
same as 5000.0. In “Cont. Move,” both the value and
sing is effective. –5000.0 means 5000.0 in the minus
direction.
Accel. Time: Set the acceleration time in units of second.
Decel. Time: Set the deceleration time in units of sec-
ond.
SVacc: Set the S-curve range during acceleration in
units of PPS.
SVdec: Set the S-curve range during deceleration in
units of PPS.
Move Delay: This setting is effective only when repeat
mode is set “On.” It will cause the 8102 to delay for a
specified time before it continues to the next motion.

MotionCreatorPro 101

PCI-8102

14.Speed_Profile: Clicking this button will show the Speed
Profile.

15.Digital I/O: Display and set Digital I/O. The related func-
tion is
_8102_get_gpio_output(),_8102_get_gpio_input(),
_8102_set_gpio_output().

16.Servo On: Set the SVON signal output status. The
related function is _8102_set_servo().

17.Play Key:

Left play button: Clicking this button will cause the 8102 start to
outlet pulses according to previous setting.

In “Absolute Mode,” it causes the axis to move to
position1.
In “Relative Mode,” it causes the axis to move forward.
In “Cont. Move,” it causes the axis to start to move
according to the velocity setting.
In “Manual Pulser Move,” it causes the axis to go into
pulse move. The speed limit is the value set by “Maxi-
mum Velocity.”

102 MotionCreatorPro

Right play button: Clicking this button will cause the 8102 start
to outlet pulses according to previous setting.

In “Absolute Mode,” it causes the axis to move to posi-
tion.
In “Relative Mode,” it causes the axis to move back-
wards.
In “Cont. Move,” it causes the axis to start to move
according to the velocity setting, but in the opposite
direction.
In “Manual Pulser Move,” it causes the axis to go into
pulse move. The speed limit is the value set by “Maxi-
mum Velocity.”

18.Stop Button: Clicking this button will cause the 8102 to
decelerate and stop. The deceleration time is defined in
“Decel. Time.” The related function is _8102_sd_stop().

19.I/O Status: The status of motion I/O. Light-On means
Active, while Light-Off indicates inactive. The related
function is _8102_get_io_status().

20. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.
Save Config: Save current configuration to 8102.ini And
8102MC.ini.
Close: Close the menu.

21.P2 Additional I/O: Control and respond digital I/O on P2
connector. The related functions are:

_8102_set_gpio_output2 (), _8102_get_gpio_output2 (),
_8102_get_gpio_input2 ()

MotionCreatorPro 103

PCI-8102

5.3.6 Two-Axis Operation Menu
In this menu, users can change the settings two selected axis,
including velocity mode motion, preset relative/absolute motion.

104 MotionCreatorPro

1. Motion Parameters: Set the parameters for single axis
motion. This parameter is meaningless if “Manual Pulser
Move” is selected, since the velocity and moving dis-
tance is decided by pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS. In “Absolute Mode” or “Relative Mode,” only the
value is effective. For example, -100.0 is the same as
100.0.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS. In “Absolute Mode” or “Relative Mode,”
only the value is effective. For example, -5000.0 is the
same as 5000.0.
 Tacc: Set the acceleration time in units of second.
Tdec: Set the deceleration time in units of second.
Sacc: Set the S-curve range during acceleration in units
of PPS.
Sdec: Set the S-curve range during deceleration in units
of PPS.

2. Repeat Mode: When “On” is selected, the motion will
become repeat mode (forwardΔΔbackward or
position1ΔΔposition2). It is only effective when “Relative
Mode” or “Absolute Mode” is selected.

3. Vel. Profile: Select the velocity profile. Both Trapezoidal
and S-Curve are available for “Absolute Mode,” “Relative
Mode,” and “Cont. Move.”

4. Operation Mode: Select operation mode.

Absolute Mode: “Position1” and “position2” will be used
as absolution target positions for motion. The related
functions are _8102_start_ta_move(),
_8102_start_sa_move().
Relative Mode: “Distance” will be used as relative dis-
placement for motion. The related function is
_8102_start_tr_move(), _8102_start_sr_move().

5. Distance: Set the relative distance for “Relative Mode.” It
is only effective when “Relative Mode” is selected.

MotionCreatorPro 105

PCI-8102

6. Position: Set the absolute position for “Absolute Mode.”
It is only effective when “Absolute Mode” is selected.

7. Buttons:

Next Card: Change operating card.
Next Axis: Change operating axis.

8. I/O Status: The status of motion I/O. Light-On means
Active, while Light-Off indicates inactive. The related
function is _8102_get_io_status().

9. Motion status: Displays the returned value of the
_8102_motion_done function. The related function is
_8102_motion_done().

10.Current Position:

Command: displays the value of the command counter.
The related function is _8102_get_position().

11.Velocity: The absolute value of velocity in units of PPS.
The related function is _8102_get_current_speed().

12.Play Key:

Left play button: Clicking this button will cause the 8102 start to
outlet pulses according to previous setting.

In “Absolute Mode,” it causes the axis to move to
position1.
In “Relative Mode,” it causes the axis to move forward.

Right play button: Clicking this button will cause the 8102 start
to outlet pulses according to previous setting.

In “Absolute Mode,” it causes the axis to move to
position2.
In “Relative Mode,” it causes the axis to move back-
wards.

Stop Button: Clicking this button will cause the 8102 to deceler-
ate and stop. The deceleration time is defined in “Decel. Time.”
The related function is _8102_sd_stop().

13.Buttons:

ClearPlots: Clear the Motion Graph.

106 MotionCreatorPro

Save Config: Save current configuration to 8102.ini And
8102MC.ini.
Close: Close the menu.

MotionCreatorPro 107

PCI-8102

5.3.7 2D_Motion Menu
Press 2-D button in operating window will enter this window. This
is for 2-D motion test. It includes the following topics:

Linear Interpolation
Circular Interpolation
Incremental Jog
Continuous Jog
Other Control Objects

108 MotionCreatorPro

1. Jog Type:

Continuous Jog

Continuous Jog means that when you press one directional
button, the axis will continuously move with an increasing
speed. The longer you press, the faster it runs. When you un-
press the button, the axis will stop immediately.

Incremental Jog

Incremental jog means that when you click one directional but-
ton, the axis will step a distance according to the Step-Size’s
setting.

2. Jog Setting: Set the parameters for single axis motion.
This parameter is meaningless if “Jog Mode” is
selected, since the velocity and moving distance is
decided by pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS.
Tacc: Set the acceleration time in units of second.

3. Operation Mode: Select operation mode.

Absolute Mode: “Position” will be used as absolution tar-
get positions for motion when “Linear Interpolation

MotionCreatorPro 109

PCI-8102

Mode” is selected. “ABS EndPos” and “ABS Center” will
be used as absolution target positions for motion when
“Circular Interpolation Mode” is selected. The related
functions are _8102_start_ta_move(),
_8102_start_sa_move().
Relative Mode: “Distance” will be used as absolution tar-
get positions for motion when “Linear Interpolation
Mode” is selected. “Dis EndPos” and “Dis Center” will be
used as absolution target positions for motion when “Cir-
cular Interpolation Mode” is selected. The related func-
tion is _8102_start_tr_move(), _8102_start_sr_move().

4. DIR: Specified direction of arc, CW/CCW, It is only effec-
tive when “Circular Interpolation Mode” is selected.

5. Vel. Profile: Select the velocity profile. Both Trapezoidal
and S-Curve are available for “Linear Interpolation
Mode” and “Circular Interpolation Mode”.

6. 6.Speed Parameters: Set the parameters for single axis
motion. This parameter is meaningless if “Linear Interpo-
lation Mode” or “Circular Interpolation Mode” is selected,
since the velocity and moving distance is decided by
pulse input.

Start Velocity: Set the start velocity of motion in units of
PPS.
Maximum Velocity: Set the maximum velocity of motion
in units of PPS.
Accel. Time: Set the acceleration time in units of second.
Decel. Time: Set the deceleration time in units of sec-
ond.
SVacc: Set the S-curve range during acceleration in
units of PPS.
SVdec: Set the S-curve range during deceleration in
units of PPS.

7. Set Distance/End Pos: Set the absolution target posi-
tions or relative distance for “Linear Interpolation Mode” .
Set the position end of arc for “Circular Interpolation

110 MotionCreatorPro

Mode”. It is available for “Linear Interpolation Mode” and
“Circular Interpolation Mode”.

8. Set Center: Set the position of center for “Circular Inter-
polation Mode”. It is only effective when “Circular Inter-
polation Mode” is selected.

9. Jog Command: Press one directional button to move.

10.Velocity: The absolute value of velocity in units of PPS.
The related function is _8102_get_current_speed().

11. Interpolation Command:

Command: displays the value of the command counter.
The related function is _8102_get_command().

12.Current Position:

Feedback: displays the value of the feedback position
counter. The related function is _8102_get_position().

13.Home Mode: Home return motion. Clicking this button
will invoke the home move configuration window. The
related function is _8102_set_home_config().There are
two home return buttons at the left-down corner of this
window. It is useful when user need to return to the ori-
gin.

14.Mode:

Linear Interpolation: After setting motion parameters correctly
in “Motion Parameters Setting Frame”, you can enter the desti-
nation in this frame. Then click Run button to start linear inter-
polation motion.

MotionCreatorPro 111

PCI-8102

Circular Interpolation: The setting for circular interpolation
mode has three additional parameters in “Motion Parameters
Setting Frame”. They are arc degree, division axis and opti-
mize option. Please refer to section 6.7 ,6.8 to set them.

After setting these parameters, you can enter the arc center
and degree in “Play Key Frame”. Click Run button to start cir-
cular interpolation motion.

Jog Type:

Continuous Jog: Continuous Jog means that when you press
one directional button, the axis will continuously move with an
increasing speed. The longer you press, the faster it runs.
When you un-press the button, the axis will stop immediately.

Incremental Jog:Incremental jog means that when you click
one directional button, the axis will step a distance according to
the Step-Size’s setting.

15.Motion status: Displays the returned value of the
_8102_motion_done function. The related function is
_8102_motion_done().

16.Play Key:

Play button: Clicking this button will cause the 8102 start to out-
let pulses according to previous setting.

112 MotionCreatorPro

In “Linear Mode,” it causes the axis to move to Distance.
The related function is _8102_start_tr_move_xy,
_8102_start_sr_move_xy.
In “Circular Mode,” it causes the axis to move to Dis-
tance(By Pos/Dist(pulse)).The related function is
_8102_start_tr_arc_xy, _8102_start_sr_arc_xy.

Stop Button: Clicking this button will cause the 8102 to deceler-
ate and stop. The deceleration time is defined in “Decel. Time.”
The related function is _8102_sd_stop().

17.Buttons:

Next Card: Change operating card.
Save Config: Save current configuration to 8102.ini And
8102MC.ini.
Close: Close the menu.

MotionCreatorPro 113

PCI-8102

18.Graph Range Frame:

Clear: Clear the Motion Graph.
Center: Display the Motion Graph in center position.

19.Graph Range: controls X or Y axis’s display range.

20.Origin Position: let user to pan the display location.

5.3.8 Help Menu
In this menu, users can Click Mouse Right Key to show Help Infor-
mation.

114 MotionCreatorPro

This page intentionally left blank.

Function Library 115

PCI-8102

6 Function Library
This chapter describes the supporting software for the PCI-8102
card. User can use these functions to develop programs in C,
C++, or Visual Basic. If Delphi is used as the programming envi-
ronment, it is necessary to transform the header files, pci_8102.h
manually.

6.1 List of Functions

Initialization Section 6.3

Pulse Input/Output Configuration Section 6.4

Velocity mode motion Section 6.5

Function Name Description
_8102_initial Card initialization
_8102_close Card Close

_8102_get_version Check the hardware and software version
_8102_set_user_code Set codes into EEPROM
_8102_get_user_code Get codes from EEPROM
_8102_config_from_file Config PCI-8102 setting from file

Function Name Description

_8102_set_pls_outmode Set pulse command output mode
_8102_set_pls_iptmode Set encoder input mode

_8102_set_feedback_src Set counter input source

Function Name Description

_8102_tv_move Accelerate an axis to a constant velocity
with trapezoidal profile

_8102_sv_move Accelerate an axis to a constant velocity
with S-curve profile

116 Function Library

Single Axis Position Mode Section 6.6

Linear Interpolated Motion Section 6.7

_8102_sd_stop Decelerate to stop
_8102_emg_stop Immediately stop

_8102_get_current_speed Get current speed(pulse/sec)
_8102_speed_override Change speed on the fly

_8102_set_max_override_speed Set the maximum orerride speed

Function Name Description

_8102_start_tr_move Begin a relative trapezoidal profile move
_8102_start_ta_move Begin an absolute trapezoidal profile move
_8102_start_sr_move Begin a relative S-curve profile move
_8102_start_sa_move Begin an absolute S-curve profile move

_8102_set_move_ratio Set the ratio of command pulse and feedback
pulse.

_8102_position_override Change position on the fly

Function Name Description

_8102_start_tr_move_xy Begin a relative 2-axis linear interpolation for X &
Y, with trapezoidal profile

_8102_start_ta_move_xy Begin an absolute 2-axis linear interpolation for
X & Y, with trapezoidal profile

_8102_start_sr_move_xy Begin a relative 2-axis linear interpolation for X &
Y, with S-curve profile

_8102_start_sa_move_xy Begin an absolute 2-axis linear interpolation for
X & Y, with S-curve profile

Function Name Description

Function Library 117

PCI-8102

Circular Interpolation Motion Section 6.8

Home Return Mode Section 6.9

Manual Pulser Motion Section 6.10

Motion Status Section 6.11

Function Name Description

_8102_start_tr_arc_xy Begin a t-curve relative circular interpolation for X &
Y

_8102_start_ta_arc_xy Begin a t-curve absolute circular interpolation for X
& Y

_8102_start_sr_arc_xy Begin a s-curve relative circular interpolation for X
& Y

_8102_start_sa_arc_xy Begin a s-curve absolute circular interpolation for X
& Y

Function Name Description

_8102_set_home_config Set the home/index logic configuration
_8102_home_move Begin a home return action
_8102_home_search Auto-Search Home Switch

Function Name Description

_8102_set_pulser_iptmode Set pulser input mode
_8102_disable_pulser_input Disable the pulser input

_8102_pulser_vmove Start pulser v move
_8102_pulser_pmove Start pulser p move

_8102_set_pulser_ratio Set manual pulser ratio for actual output pulse
rate

Function Name Description
_8102_motion_done Return the motion status

118 Function Library

Motion Interface I/O Section 6.12

Interrupt Control Section 6.13

Function Name Description

_8102_set_servo Set On-Off state of SVON signal
_8102_set_pcs_logic Set PCS signal’s logic
_8102_set_clr_mode Set CLR signal’s mode

_8102_set_inp Set INP signal’s logic and operating mode
_8102_set_alm Set ALM signal’s logic and operating mode
_8102_set_erc Set ERC signal’s logic and timing
_8102_set_sd Set SD signal’s logic and operating mode

_8102_enable_sd Enable SD signal
_8102_set_limit_logic Set EL signal’s logic
_8102_set_limit_mod

e Set EL operating mode

_8102_get_io_status Get all the motion I/O status of 8102

Function Name Description

_8102_int_control Enable/Disable INT service
_8102_wait_error_interrupt Wait error related interrupts
_8102_wait_motion_interru

pt Wait motion related interrupts

_8102_set_motion_int_fact
or Set the factors of motion related interrupts

_8102_wait_gpio_interrupt Waiting GPIO interrupts

_8102_set_gpio_int_factor Set the factors of general purpose IO
related interrupt

Function Library 119

PCI-8102

Position Control and Counters Section 6.14

Position Compare and Latch Section 6.15

Function Name Description

_8102_get_position Get the value of the feedback position counter
_8102_set_position Set the feedback position counter

_8102_get_command Get the value of the command position coun-
ter

_8102_set_command Set the command position counter
_8102_get_error_counter Get the value of the position error counter

_8102_reset_error_counter Reset the position error counter
_8102_get_general_counter Get the value of the general counter
_8102_set_general_counter Set the general counter

_8102_get_target_pos Get the value of the target position recorder
_8102_reset_target_pos Reset target position recorder

_8102_get_res_distance Get remaining pulses accumulated from
motions

_8102_set_res_distance Set remaining pulses record

Function Name Description

_8102_set_trigger_logic Set CMP signal logic
_8102_set_error_comparator Set the error comparator

_8102_set_general_comparator Set the general comparator
_8102_set_trigger_comparator Set the trigger comparator

_8102_set_latch_source Set the latch timing for a counter
_8102_set_ltc_logic Set the LTC signal’s logic

_8102_get_latch_data Get the latch data

120 Function Library

Continuous Motion Section 6.16

Multiple Axes Simultaneous Operation Section 6.17

General-purposed Input/Output Section 6.18

Soft Limit Section 6.19

Function Name Description

_8102_set_continuous_move Enable continuous motion for absolute
motion

_8102_check_continuous_buffer Check if the buffer is empty
_8102_dwell_move

Function Name Description

_8102_set_tr_move_all Multi-axis simultaneous operation setup
_8102_set_ta_move_all Multi-axis simultaneous operation setup
_8102_set_sr_move_all Multi-axis simultaneous operation setup
_8102_set_sa_move_all Multi-axis simultaneous operation setup
_8102_start_move_all Begin a multi-axis trapezoidal profile motion
_8102_stop_move_all Simultaneously stop multi-axis motion

Function Name Description

_8102_set_gpio_output Set digital output
_8102_get_gpio_output Get digital output
_8102_get_gpio_input Get digital input

_8102_set_gpio_output2 Set digital output to P2
_8102_set_gpio_output2 Get digital output form P2
_8102_get_gpio_input2 Get digital input form P2

Function Name Description

_8102_disable_soft_limit Disable soft limit function
_8102_enable_soft_limit Enable soft limit function

Function Library 121

PCI-8102

Backlash Compensation / Vibration Suppression Section 6.20

Speed Profile Calculation Section 6.21

6.2 C/C++ Programming Library
This section details all the functions. The function prototypes and
some common data types are declared in PCI-8102.H . We sug-
gest you use these data types in your application programs. The
following table shows the data type names and their range.

_8102_set_soft_limit Set the soft limits

Function Name Description

_8102_backlash_comp Set backlash corrective pulse for compensation
_8102_suppress_vibration Set suppress vibration idle pulse counts

_8102_set_fa_speed Set FA speed for home mode

Function Name Description

_8102_get_tr_move_profile Get relative trapezoidal speed profile
_8102_get_ta_move_profile Get absolute trapezoidal speed profile
_8102_get_sr_move_profile Get relative S-curve speed profile
_8102_get_sa_move_profile Get absoulte S-curve speed profile

Type
Name Description Range

U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535

I32 32-bit signed long integer -2147483648 to
2147483647

U32 32-bit unsigned long integer 0 to 4294967295

F32 32-bit single-precision floating-point -3.402823E38 to
3.402823E38

Function Name Description

122 Function Library

The functions of the 8102’s software drivers use full-names to rep-
resent the functions real meaning. The naming convention rules
are:

In a ‘C’ programming environment:

_{hardware_model}_{action_name}. e.g. _8102_Initial().

In order to recognize the difference between a C library and a VB
library, a capital “B” is placed at the beginning of each function
name e.g. B_8102_Initial().

6.3 Initialization

@ Name
_8102_initial – Card initialization
_8102_close – Card close
_8102_get_version – Check hardware and software

version information
_8102_set_user_code – Set codes into EEPROM
_8102_get_user_code – Get codes into EEPROM
_8102_config_from_file Config – PCI-8102 setting

from file

@ Description
_8102_initial:

This function is used to initialze an 8102 card without assigning
the hardware resources. All 8102 cards must be initialized by this
function before calling other functions in your applications. By set-
ting the parameter “Manual_ID”, user can choose the type that the
card’s ID is assigned manually or automaticly.

_8102_close:

F64 64-bit double-precision floating-point

-
1.797683134862315E308

to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

Type
Name Description Range

Function Library 123

PCI-8102

This function is used to close 8102 card and release its resources,
which should be called at the end of your applications.

_8102_get_version:

Lets users read back the firmware’s, driver’s and DLL’s version
information.

_8102_set_user_code:

Set your own codes into EEPROM. It can secure users’ applcai-
tion to avoid plagiarism.

_8102_get_user_code:

Get codes that you set by the function “_8102_set_user_code”
from EEPROM.

_8102_config_from_file:

This function is used to load the configeration of the PCI-8102
according to specified file. By using Motion Creater, user could
test and configure the 8102 correctly. After saving the configura-
tion, the file would be existed in user’s system directory as
8102.ini.

When this function is executed, all 8102 cards in the system will
be configured as the following functions were called according to
parameters recorded in 8102.ini.

_8102_set_limit_logic
_8102_set_pcs_logic
_8102_set_ltc_logic
_8102_set_inp
_8102_set_erc
_8102_set_alm
_8102_set_pls_iptmode
_8102_set_pls_outmode
_8102_set_move_ratio
_8102_set_latch_source
_8102_set_feedback_src
_8102_set_home_config
_8102_set_soft_limit
_8102_set_fa_speed
_8102_set_sd

124 Function Library

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_initial(U16 *CardID_InBit, I16
Manual_ID);

I16 _8102_close(void);
I16 _8102_get_version(I16 card_id, I16

*firmware_ver, I32 *driver_ver, I32
*dll_ver);

I16 _8102_set_user_code(I16 card_id, I16 Length,
U16 *sec_code);

I16 _8102_get_user_code(I16 card_id, I16 Length,
U16 *sec_code);

I16 _8102_config_from_file();
Visual Basic 6(Windows 2000/XP/7)

B_8102_initial(CardID_InBit As Integer, ByVal
Manual_ID As Integer) As Integer

B_8102_close() As Integer
B_8102_get_version(ByVal card_id As Integer,

firmware_ver As Integer, driver_ver As Long,
dll_ver As Long) As Integer

B_8102_set_user_code(ByVal card_id As Integer,
ByVal Length As Integer, sec_code As
Integer) As Integer

B_8102_get_user_code(ByVal card_id As Integer,
ByVal Length As Integer, sec_code As
Integer) As Integer

B_8102_config_from_file() As Integer

@ Argument
CardID_InBit: Use Hex number to show ID occupation status in
the controller. For example, if user has two boards and one is set
to 1(DIP swtich) and the other one is set to 3(DIP switch), you will
read back the value as 0x000A because the bit 1 and bit 3 are 1
(Card ID exists) and other bits are OFF.

Manual_ID: Enable the on-board dip switch (SW1) to decide the
Card ID

Value meaning:

The CardID could be decided by :

0: the sequence of PCI slot.

Function Library 125

PCI-8102

1: on board DIP switch (SW1).

card_id: Specify the PCI-8102 card index. The card_id could be
decided by DIP switch (SW1) or depend on slot sequence.Please
refer to _8102_initial().

firmware_ver: The current firmware version.

driver_ver: The current device driver version.

dll_ver: The current DLL library version.

Length: Array size. Length = 1~12

*sec_code: A numerical array, the array size would be set
between 1 and 12.

6.4 Pulse Input/Output Configuration

@ Name
_8102_set_pls_iptmode – Set the configuration for

feedback pulse input.
_8102_set_pls_outmode – Set the configuration for

pulse command output.
_8102_set_feedback_src – Enable/Disable the

external feedback pulse input

@ Description
_8102_set_pls_iptmode:

Configure the input modes of external feedback pulses. There are
four types for feedback pulse input. Note that this function makes
sense only when the Src parameter in _8102_set_feedback_src()
function is enabled.

_8102_set_pls_outmode:

Configure the output modes of command pulses. There are 6
modes for command pulse output.

_8102_set_feedback_src:

If external encoder feedback is available in the system, set the Src
parameter in this function to an Enabled state. Then, the internal
28-bit up/down counter will count according to the configuration of

126 Function Library

the _8102_set_pls_iptmode() function. Else, the counter will count
the command pulse output.

@ Syntax
C/C++ (DOS, Windows 95/NT)

I16 _8102_set_pls_iptmode(I16 AxisNo, I16
pls_iptmode, I16 pls_logic);

I16 _8102_set_pls_outmode(I16 AxisNo, I16
pls_outmode);

I16 _8102_set_feedback_src(I16 AxisNo, I16 Src);
Visual Basic (Windows 95/NT)

B_8102_set_pls_iptmode (ByVal AxisNo As Integer,
ByVal pls_iptmode As Integer, ByVal
pls_logic As Integer) As Integer

B_8102_set_pls_outmode (ByVal AxisNo As Integer,
ByVal pls_outmode As Integer) As Integer

B_8102_set_feedback_src (ByVal AxisNo As Integer,
ByVal Src As Integer) As Integer

@ Argument
AxisNo: Axis number designated to configure the pulse input/out-
put. It varied according to users’ ID setting. The following is an
example:

pls_iptmode: Encoder feedback pulse input mode setting (EA/EB
signals).

card_id Physical
axis Axis No

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Value Meaning

0 1X A/B

Function Library 127

PCI-8102

pls_logic: Logic of encoder feedback pulse.

pls_outmode: Setting of command pulse output mode.

Src: Counter source

@ Return Code
 ERR_NoError

6.5 Velocity mode motion

@ Name
_8102_tv_move – Accelerate an axis to a constant

velocity with trapezoidal profile

1 2X A/B
2 4X A/B
3 CW/CCW

Value Meaning

0 Not inverse direction
1 inverse direction

Value Meaning

0 External signal feedback
1 Command pulse

Value Meaning

128 Function Library

_8102_sv_move – Accelerate an axis to a constant
velocity with S-curve profile

_8102_emg_stop – Immediately stop
_8102_sd_stop – Decelerate to stop
_8102_get_current_speed – Get current speed
_8102_speed_override – Change speed on the fly
_8102_set_max_override_speed – Set the maximum

orerride speed

@ Description
_8102_tv_move:

This function is to accelerate an axis to the specified constant
velocity with a trapezoidal profile. The axis will continue to travel at
a constant velocity until the velocity is changed or the axis is com-
manded to stop. The direction is determined by the sign of the
velocity parameter.

_8102_sv_move:

This function is to accelerate an axis to the specified constant
velocity with a S-curve profile. The axis will continue to travel at a
constant velocity until the velocity is changed or the axis is com-
manded to stop. The direction is determined by the sign of velocity
parameter.

_8102_emg_stop:

This function is used to immediately stop an axis. This function is
also useful when a preset move (both trapezoidal and S-curve
motion), manual move, or home return function is performed.

_8102_sd_stop:

This function is used to decelerate an axis to stop with a trapezoi-
dal or S-curve profile. This function is also useful when a preset
move (both trapezoidal and S-curve motion), manual move, or
home return function is performed. Note: The velocity profile is
decided by original motion profile.

_8102_get_current_speed:

This function is used to read the current pulse output rate (pulse/
sec) of a specified axis. It is applicable in any time in any operation
mode.

Function Library 129

PCI-8102

_8102_speed_override:

This function is used to change motion speed on the fly. The over-
rided speed cannot higher than maximum motion speed. On the
other hand, Users also can use the function
“_8102_set_max_override_speed” to set the maximum override
speed which may higher or lower than maximum motion speed
before motion.

_8102_set_max_override_speed:

This function is used to set the max orerrided speed. This function
is used before velocity motion.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_tv_move(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc);

I16 _8102_sv_move(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc, F64 SVacc);

I16 _8102_emg_stop(I16 AxisNo);
I16 _8102_sd_stop(I16 AxisNo, F64 Tdec);
I16 _8102_get_current_speed(I16 AxisNo, F64

*speed)
I16 _8102_speed_override(I16 CAxisNo, F64

NewVelPercent, F64 Time);
I16 _8102_set_max_override_speed(I16 AxisNo, F64

OvrdSpeed, I16 Enable);
Visual Basic6 (Windows 2000/XP/7)

B_8102_tv_move(ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double) As Integer

B_8102_sv_move(ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double, ByVal SVacc As Double)
As Integer

B_8102_emg_stop(ByVal AxisNo As Integer) As
Integer

B_8102_sd_stop(ByVal AxisNo As Integer, ByVal
Tdec As Double) As Integer

B_8102_get_current_speed(ByVal AxisNo As Integer,
ByRef Speed As Double) As Integer

130 Function Library

B_8102_speed_override(ByVal CaxisNo As Integer ,
ByVal NewVelPercent as Double, ByVal Time As
Interger);

B_8102_set_max_override_speed(ByVal AxisNo As
Integer, ByVal OvrdSpeed As Double, ByVal
Enable As Integer);

@ Argument
AxisNo: Axis number designated to move or stop.

StrVel: Starting velocity in units of pulse per second

MaxVel: Maximum velocity in units of pulse per second

Tacc: Specified acceleration time in units of second

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve
Tdec: specified deceleration time in units of second

*Speed: Variable to get current speed (pulse/sec).

6.6 Single Axis Position Mode

@ Name
_8102_start_tr_move – Begin a relative

trapezoidal profile move
_8102_start_ta_move – Begin an absolute

trapezoidal profile move
_8102_start_sr_move – Begin a relative S-curve

profile move

card_id Physical
axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Function Library 131

PCI-8102

_8102_start_sa_move – Begin an absolute S-curve
profile move

_8102_set_move_ratio – Set the ration of command
pulse and feedback pulse

_8102_position_override – Change position on the
fly

@ Description
General:

The moving direction is determined by the sign of the Pos or Dist
parameter. If the moving distance is too short to reach the speci-
fied velocity, the controller will automatically lower the MaxVel, and
the Tacc, Tdec, VSacc, and VSdec will also become shorter while
dV/dt(acceleration / deceleration) and d(dV/dt)/dt (jerk) are keep
unchanged.

_8102_start_tr_move:

This function causes the axis to accelerate form a starting velocity
(StrVel), rotate at constant velocity (MaxVel), and decelerate to
stop at the relative distance with trapezoidal profile. The accelera-
tion (Tacc) and deceleration (Tdec) time is specified indepen-
dently–it does not let the program wait for motion completion but
immediately returns control to the program.

_8102_start_ta_move:

This function causes the axis to accelerate from a starting velocity
(StrVel), rotate at constant velocity (MaxVel), and decelerates to
stop at the specified absolute position with trapezoidal profile. The
acceleration (Tacc) and deceleration (Tdec) time is specified inde-
pendently. This command does not let the program wait for motion
completion, but immediately returns control to the program.

_8102_start_sr_move:

This function causes the axis to accelerate from a starting velocity
(StrVel), rotate at constant velocity (MaxVel), and decelerates to
stop at the relative distance with S-curve profile. The acceleration
(Tacc) and deceleration (Tdec) time is specified independently.
This command does not let the program wait for motion comple-
tion, but immediately returns control to the program.

132 Function Library

_8102_start_sa_move:

This function causes the axis to accelerate from a starting velocity
(StrVel), rotate at constant velocity, and decelerates to stop at the
specified absolute position with S-curve profile. The acceleration
and deceleration time is specified independently.This command
does not let the program wait for motion completion but immedi-
ately returns control to the program.

_8102_set_move_ratio:

This function configures scale factors for the specified axis. Usu-
ally, the axes only need scale factors if their mechanical resolu-
tions are different. For example, if the resolution of feedback
sensors is two times resolution of command pulse, then the
parameter “move_ratio” could be set as 2.

_8102_position_override:

This function is used to change target position on the fly. There are
some limitations on this function. Please refer to section 4.2.15
before use it.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_start_tr_move(I16 AxisNo, F64 Dist, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8102_start_ta_move(I16 AxisNo, F64 Pos, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8102_start_sr_move(I16 AxisNo, F64 Dist, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8102_start_sa_move(I16 AxisNo, F64 Pos, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8102_set_move_ratio(I16 AxisNo, F64
move_ratio);

I16 _8102_position_override(I16 AxisNo, F64
NewPos);

Visual Basic6 (Windows 2000/XP/7)
B_8102_start_tr_move(ByVal AxisNo As Integer,

ByVal Dist As Double, ByVal StrVel As

Function Library 133

PCI-8102

Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8102_start_ta_move(ByVal AxisNo As Integer,
ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_8102_start_sr_move(ByVal AxisNo As Integer,
ByVal Dist As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

B_8102_start_sa_move(ByVal AxisNo As Integer,
ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As
Double, ByVal SVdec As Double) As Integer

B_8102_set_move_ratio(ByVal AxisNo As Integer,
ByVal move_ratio As Double) As Integer

B_8102_position_override(ByVal AxisNo As Integer,
ByVal NewPos As Double) As Integer

@ Argument
AxisNo: Axis number designated to move or change position.

Dist: Specified relative distance to move (unit: pulse)

Pos: Specified absolute position to move (unit: pulse)

StrVel: Starting velocity of a velocity profile in units of pulse per
second

MaxVel: Maximum velocity in units of pulse per second

Tacc: Specified acceleration time in units of seconds

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

134 Function Library

Tdec: Specified deceleration time in units of seconds

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve. For more details, see
section 4.2.4

SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve. For more details, see
section 4.2.4

Move_ratio: ratio of (feedback resolution)/(command resolution) ,
should not be 0

NewPos: specified new absolute position to move

6.7 Linear Interpolated Motion

@ Name
_8102_start_tr_move_xy – Begin a relative 2-axis

linear interpolation with trapezoidal
profile

_8102_start_ta_move_xy – Begin an absolute 2-axis
linear interpolation for with trapezoidal
profile

_8102_start_sr_move_xy –Begin a relative 2-axis
linear interpolation for with S-curve
profile

_8102_start_sa_move_xy –Begin an absolute 2-axis
linear interpolation for with S-curve
profile

@ Description
These functions perform linear interpolation motion with different
profile. Detail Comparsions of those functions are described by fol-
low table.

Function Total
axes

Velocity
profile

Relative /
Absolute

Target
axes

_8102_start_tr_move_xy 2 T R Axes 0 & 1

Function Library 135

PCI-8102

Velocity profile :

 T : trapezoidal profile

 S : s curve profile

Relative / Absolute:

 R: Relative distance

 A: Absoulte position

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_start_tr_move_xy(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec);

I16 _8102_start_ta_move_xy(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8102_start_sr_move_xy(I16 Card_id, F64
DistX, F64 DistY, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8102_start_sa_move_xy(I16 Card_id, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

Visual Basic6 (Windows 2000/XP/7)
B_8102_start_tr_move_xy(ByVal CardNo As Integer,

ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8102_start_ta_move_xy(ByVal CardNo As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

_8102_start_ta_move_xy 2 T A Axes 0 & 1
_8102_start_sr_move_xy 2 S R Axes 0 & 1
_8102_start_sa_move_xy 2 S A Axes 0 & 1

Function Total
axes

Velocity
profile

Relative /
Absolute

Target
axes

136 Function Library

B_8102_start_sr_move_xy(ByVal CardNo As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8102_start_sa_move_xy(ByVal CardNo As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

@ Argument
AxisNo: Axis number designated to move or change position.

DistX: specified relative distance of axis 0 to move (unit: pulse).

DistY: specified relative distance of axis 1 to move (unit: pulse).

PosX: specified absolute position of axis 0 to move (unit: pulse).

PosY: specified absolute position of axis 1 to move (unit: pulse).

StrVel: Starting velocity of a velocity profile in units of pulse per
second.

MaxVel: Maximum velocity in units of pulse per second.

Tacc: Specified acceleration time in units of seconds.

Tdec: Specified deceleration time in units of seconds.

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve. For more details, see

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Function Library 137

PCI-8102

section 4.2.4
SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve. For more details, see section
4.2.4

6.8 Circular Interpolation Motion

@ Name
_8102_start_tr_arc_xy – Begin a T-curve relative

circular interpolation
_8102_start_ta_arc_xy – Begin a T-curve absolute

circular interpolation
_8102_start_sr_arc_xy – Begin a S-curve relative

circular interpolation
_8102_start_sa_arc_xy –Begin a S-curve absolute

circular interpolation

@ Description
Those functions perform Circular interpolation motion with differ-
ent profile. Detail Comparsions of those functions are described by
follow table.

Function Total
axes

Velocity
Profile

Relative/
Absolute

Target
Axes

_8102_start_tr_arc_
xy 2 trapezoidal R Axes 0 &

1
_8102_start_ta_arc

_xy 2 trapezoidal A Axes 0 &
1

_8102_start_sr_arc
_xy 2 S-curve R Axes 0 &

1
_8102_start_sa_arc

_xy 2 S-curve A Axes 0 &
1

138 Function Library

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_start_tr_arc_xy(I16 Card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _8102_start_ta_arc_xy(I16 Card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec);

I16 _8102_start_sr_arc_xy(I16 Card_id, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8102_start_sa_arc_xy(I16 Card_id, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64
StrVel,F64 MaxVel,F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

Visual Basic6 (Windows 2000/XP/7)
B_8102_start_tr_arc_xy(ByVal CardNo As Integer,

ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8102_start_ta_arc_xy(ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8102_start_sr_arc_xy(ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal CW_CCW As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8102_start_sa_arc_xy(ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,

Function Library 139

PCI-8102

ByVal CW_CCW As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

@ Argument
AxisNo: Axis number designated to move or change position.

OffsetCx: X-axis offset to center

OffsetCy: Y-axis offset to center

OffsetEx: X-axis offset to end of arc

OffsetEy: Y-axis offset to end of arc

DIR: Specified direction of arc

StrVel: Starting velocity of a velocity profile in units of pulse per
second.

MaxVel: Maximum velocity in units of pulse per second.

Tacc: Specified acceleration time in units of seconds.

Tdec: Specified deceleration time in units of seconds.

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Value Meaning

0 Clockwise (cw)
1 Counterclockwise (ccw)

140 Function Library

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve. For more details, see
section 4.2.4

SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve. For more details, see
section 4.2.4

6.9 Home Return Mode

@ Name
_8102_set_home_config – Set the configuration for

home return.
_8102_home_move – Perform a home return move.
_8102_home_search – Perform auto home search

@ Description
_8102_set_home_config:

Configures the home return mode, origin & index signal(EZ) logic,
EZ count, and ERC output options for the home_move() function.
Refer to Section 4.1.8 for the setting of home_mode control.

_8102_home_move:

This function will cause the axis to perform a home return move
according to the _8102_set_home_config() function settings. The
direction of movement is determined by the sign of velocity param-
eter (svel, mvel). Since the stopping condition of this function is
determined by the home_mode setting, users should take care in
selecting the initial moving direction. Users should also take care
to handle conditions when the limit switch is touched or other con-
ditions that are possible causing the axis to stop. Executing
v_stop() function during home_move() can also cause the axis to
stop.

_8102_home_search:

Function Library 141

PCI-8102

This function is used to start home searching no matter the loca-
tion of axis. The ORGoffset must be set to non-zero to previous
miss operation.

@ Syntax
C/C++ (DOS, Windows 95/NT)

I16 _8102_set_home_config(I16 AxisNo, I16
home_mode, I16 org_logic, I16 ez_logic, I16
ez_count, I16 erc_out);

I16 _8102_home_move(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc);

I16 _8102_home_search(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc, F64 ORGOffset);

Visual Basic (Windows 95/NT)
B_8102_set_home_config (ByVal AxisNo As Integer,

ByVal home_mode As Integer, ByVal org_logic
As Integer, ByVal ez_logic As Integer, ByVal
ez_count As Integer, ByVal erc_out As
Integer) As Integer

B_8102_home_move (ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double) As Integer

B_8102_home_search (ByVal AxisNo As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal
ORGOffset As Double) As Integer

@ Argument
AxisNo: Axis number designated to move or change position.

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

142 Function Library

home_mode: Stopping modes for home return, This value is
between 0 to 12. Please see Section 4.2.10

org_logic: Action logic configuration for ORG

ez_logic: Action logic configuration for EZ

ez_count: 0~15 (Please refer to see Section 4.2.10)

erc_out: Set ERC output options.

StrVel: Starting velocity of a velocity profile. (unit: pulse/sec)

MaxVel: Maximum velocity. (unit: pulse/sec)

Tacc: Specified acceleration time (Unit: sec)

ORGOffset: The escape pulse amounts when home search
touches the ORG singal (Unit: pulse)

@ Return Code
 ERR_NoError

Value Meaning

0 Active low
1 Active high

Value Meaning

0 Active low
1 Active high

Value Meaning

0 no ERC out
1 ERC signal out when home-move is complete

Function Library 143

PCI-8102

6.10 Manual Pulser Motion

@ Name
_8102_disable_pulser_input – Disable the pulser

input
_8102_pulser_pmove – Manual pulser p_move
_8102_pulser_vmove – Manual pulser v_move
_8102_set_pulser_ratio – Set manual pulser ratio

for actual output pulse rate
_8102_set_pulser_iptmode – Set the input signal

modes of pulser

@ Description
_8102_disable_pulser_input

This function is used to set the pulser input disabel or enabel.

_8102_pulser_pmove

With this command, the axis begins to move according to the man-
ual pulse input. The axis will output one pulse when it receives one
manual pulse, until the _8102_disable_pulser_input function dis-
ables the pulser or the output pulse number reaches the distance.

_8102_pulser_vmove

With this command, the axis begins to move according to the man-
ual pulse input. The axis will output one pulse when it receives one
manual pulse, until the _8102_disable_pulser_input function dis-
ables the pulser.

_8102_set_pulser_ratio

Set manual pulse ratio for actual output pulse rate. The formula for
manual pulse output rate is:

Output Pulse Count = Input Pulser Count × 4 (MultiF +1) ×(DivF
+1) / 2048

The DivF = 0~2047 Divide Factor

The MultiF= 0~31 Multiplication Factor

_8102_set_pulser_iptmode

This function is used to configure the input mode of manual pulser.

144 Function Library

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_disable_pulser_input(I16 AxisNo, U16
Disable);

I16 _8102_pulser_pmove(I16 AxisNo, F64 Dist, F64
SpeedLimit);

I16 _8102_pulser_vmove(I16 AxisNo, F64
SpeedLimit);

I16 _8102_set_pulser_ratio(I16 AxisNo, I16 DivF,
I16 MultiF);

I16 _8102_set_pulser_iptmode(I16 AxisNo, I16
InputMode, I16 Inverse);

Visual Basic (Windows 2000/XP/7)
B_8102_disable_pulser_input(ByVal AxisNo As

Integer, ByVal Disable As Integer) As
Integer

B_8102_pulser_pmove(ByVal AxisNo As Integer,
ByVal Dist As Double, ByVal SpeedLimit As
Double) As Integer

B_8102_pulser_vmove(ByVal AxisNo As Integer,
ByVal SpeedLimit As Double) As Integer

B_8102_set_pulser_ratio(ByVal AxisNo As Integer,
ByVal DivF As Integer, ByVal MultiF As
Integer) As Integer

B_8102_set_pulser_iptmode(ByVal AxisNo As
Integer, ByVal InputMode As Integer, ByVal
Inverse As Integer) As Integer

@ Argument
AxisNo: Axis number designated to move or change position.

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Function Library 145

PCI-8102

Disable: Disable pulser input.

Disable = 1, disable pulser
Disable = 0, enable pulser

Dist: Specified relative distance to move (unit: pulse)

For example, if SpeedLimit is set to be 100pps, then the axis can
move at fastest 100pps , even the input pulser signal rate is more
then 100pps.

DivF: Divide factor (0~2047)

MultiF: Multiplication factor (0~31)

InputMode: Setting of manual pulse input mode from the PA and
PB pins

Inverse: Reverse the moving direction from pulse direction

6.11 Motion Status

@ Name
_8102_motion_done – Return the motion status

@ Description
_8102_motion_done:

Value Meaning

0 1X AB phase type pulse input
1 2X AB phase type pulse input
2 4X AB phase type pulse input
3 CW/CCW type pulse input

Value Meaning

0 no inverse
1 Reverse moving direction

146 Function Library

Return the motion status of the 8102. The return code show as
below:

@ Syntax
C/C++ (DOS, Windows 95/NT)

I16 _8102_motion_done(I16 AxisNo);
Visual Basic (Windows 95/NT)

B_8102_motion_done (ByVal AxisNo As Integer) As
Integer

0 Normal stopped condition
1 Waiting for DR
2 Waiting for CSTA input
3 Waiting for an internal synchronous signal
4 Waiting for another axis to stop
5 Waiting for a completion of ERC timer
6 Waiting for a completion of direction change timer
7 Correcting backlash
8 Wait PA/PB
9 At FA speed

10 At FL Speed
11 Accelerating
12 At FH Speed
13 Decelerating
14 Wait INP
15 Others (Controlling Start)
16 SALM
17 SPEL
18 SMEL
19 SEMG
20 SSTP
21 SERC

Function Library 147

PCI-8102

@ Argument
AxisNo: Axis number designated to start manual move

6.12 Motion Interface I/O

@ Name
_8102_set_servo – Set the ON-OFF state of the

SVON signal
_8102_set_pcs_logic – Set the logic of PCS signal
_8102_set_lcr_mode – Set the mode of CLR signal
_8102_set_inp – Set the logic of INP signal and

operating mode
_8102_set_alm – Set the logic of ALM signal and

operating mode
_8102_set_erc – Set the logic of ERC signal and

operating mode
_8102_set_sd – Set the logic SD signal and

operating mode
_8102_enable_sd – Enable SD signal
_8102_set_limit_logic – Set the logic of PEL/MEL

signal
_8102_set_limit_mode – Set PEL/MEL operating mode
_8102_select_pin23_input – set pin NO.23 signal

source
_8102_select_pin57_input – set pin No.57 signal

source
_8102_get_io_status –Get all the motion I/O

statuses of each 8102

@ Description
_8102_set_servo:

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

148 Function Library

You can set the ON-OFF state of the SVON signal with this func-
tion. The default value is 1(OFF), which means the SVON is open
to GND.

_8102_set_pcs_logic:

Set the active logic of the PCS signal input

_8102_set_lcr_mode

CLR inputed signal can reset specified counters from counter 1 to
4. The reset action could be set by this function. The reset action
mode has 4 types. For details refer to argument.

_8102_set_inp:

Set the active logic of the In-Position signal input from the servo
driver. Users can select whether they want to enable this function.
It is disabled by default.

_8102_set_alm:

Set the active logic of the ALARM signal input from the servo
driver. Two reaction modes are available when the ALARM signal
is active.

_8102_set_erc:

You can set the logic and on time of the ERC with this function. It
also can set the pulser width of ERC signal.

_8102_set_sd:

Set the active logic, latch control, and operating mode of the SD
signal input from a mechanical system. Users can select whether
they want to enable this function by _8102_enable_sd. It is dis-
abled by default

_8102_enable_sd:

Enable the SD signal input. Default setting is default.

_8102_set_limit_logic:

Set the EL logic, normal open or normal closed.

_8102_set_limit_mode:

Set the reaction modes of the EL signal.

_8102_select_pin23_input:

Function Library 149

PCI-8102

Set the pin 23 to the input signal SD1, LTC1 or PCS1.

_8102_select_pin57_input:

Set the pin 57 to the input signal SD2, LTC2 or PCS2

_8102_get_io_status:

Get all the I/O statuses for each axis. The definition for each bit is
as follows:

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_set_servo(I16 AxisNo, I16 on_off);
I16 _8102_set_pcs_logic(I16 AxisNo, I16

pcs_logic);
I16 _8102_set_clr_mode(I16 AxisNo, I16 clr_mode);
I16 _8102_set_inp(I16 AxisNo, I16 inp_enable, I16

inp_logic);
I16 _8102_set_alm(I16 AxisNo, I16 alm_logic, I16

alm_mode);
I16 _8102_set_erc(I16 AxisNo, I16 erc_logic, I16

erc_pulse_width);

Bit Name Description

0 RDY RDY pin input
1 ALM Alarm Signal
2 +EL Positive Limit Switch
3 -EL Negative Limit Switch
4 ORG Origin Switch
5 DIR DIR output
6 EMG EMG status
7 PCS PCS signal input
8 ERC ERC pin output
9 EZ Index signal
10 CLR Clear signal
11 LTC Latch signal input
12 SD Slow Down signal input
13 INP In-Position signal input
14 SVON Servo-ON output status

150 Function Library

I16 _8102_set_sd(I16 AxisNo, I16 sd_logic, I16
sd_latch, I16 sd_mode);

I16 _8102_enable_sd(I16 AxisNo, I16 enable);
I16 _8102_set_limit_logic(I16 AxisNo, U16 Logic

);
I16 _8102_set_limit_mode(I16 AxisNo, I16

limit_mode);
I16 _8102_select_pin23_input(I16 card_id, U16

Select);
I16 _8102_select_pin57_input(I16 card_id, U16

Select);
Visual Basic (Windows 2000/XP/7)

B_8102_set_servo(ByVal AxisNo As Integer, ByVal
on_off As Integer) As Integer

B_8102_set_pcs_logic(ByVal AxisNo As Integer,
ByVal pcs_logic As Integer) As Integer

B_8102_set_clr_mode(ByVal AxisNo As Integer,
ByVal clr_mode As Integer) As Integer

B_8102_set_inp(ByVal AxisNo As Integer, ByVal
inp_enable As Integer, ByVal inp_logic As
Integer) As Integer

B_8102_set_alm(ByVal AxisNo As Integer, ByVal
alm_logic As Integer, ByVal alm_mode As
Integer) As Integer

B_8102_set_erc(ByVal AxisNo As Integer, ByVal
erc_logic As Integer, ByVal erc_pulse_width
As Integer) As Integer

B_8102_set_sd(ByVal AxisNo As Integer, ByVal
sd_logic As Integer, ByVal sd_latch As
Integer, ByVal sd_mode As Integer) As
Integer

B_8102_enable_sd(ByVal AxisNo As Integer, ByVal
Enable As Integer) As Integer

B_8102_set_limit_logic(ByVal AxisNo As Integer,
ByVal Logic As Integer) As Integer

B_8102_set_limit_mode(ByVal AxisNo As Integer,
ByVal limit_mode As Integer) As Integer

B_8102_select_pin23_input (ByVal card_id As
Integer, ByVal SelectNo As Integer) As
Integer

B_8102_select_pin57_input(ByVal card_id As
Integer, ByVal SelectNo As Integer) As
Integer

Function Library 151

PCI-8102

@ Argument

AxisNo: Axis number of Target Axis.card_idPhysical axisAxisNo

on_off: ON-OFF state of SVON signal

pcs_logic: PCS signal input logic

clr_mode: Clear action mode.

clr_mode = 0 , Clear on the falling edge (default)
clr_mode = 1 , Clear on the rising edge
clr_mode = 2 , Clear on a LOW level
clr_mode = 3 , Clear on a HIGH level

inp_enable: INP function enabled/disabled

inp_enable = 0, Disabled (default)
inp_enable = 1, Enabled

inp_logic: Set the active logic for the INP signal

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Value Meaning

0 ON
1 OFF

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Negative logic

152 Function Library

alm_logic: Setting of active logic for ALARM signals

alm_mode: reaction modes when receiving an ALARM signal.

erc_logic: Set the active logic for the ERC signal

erc_pulse_width: Set the pulse width of the ERC signal

sd_logic:

1 Positive logic

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 motor immediately stops (default)
1 motor decelerates then stops

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 12 us
1 102 us
2 409 us
3 1.6 ms
4 13 ms
5 52 ms
6 104 ms
7 Level output

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

Function Library 153

PCI-8102

sd_latch: Set the latch control for the SD signal

sd_mode: Set the reaction mode of the SD signal

enable: Set the ramping-down point for high speed feed.

Logic: Set the PEL/MEL logic.

limit_mode:

Select: select the corresponding signal to specified pin

Value Meaning

0 Do not latch
1 latch

Value Meaning

0 slow down only
1 slow down then stop

Value Meaning

0 Automatic setting
1 Manual setting (default)

Value Meaning

0 Normal low (normal open)
1 Normal high (normal close)

Value Meaning

0 Stop immediately
1 Slow down then stop

Value Meaning

0 CLR pin
1 LTC pin
2 SD pin
3 PCS pin

154 Function Library

6.13 Interrupt Control

@ Name
_8102_int_control – Enable/Disable INT service
_8102_set_motion_int_factor – Set the factors of

motion related interrupts
_8102_set_gpio_int_factor – Set the factors of

general purpose IO related interrupts
_8102_wait_error_interrupt – Wait error related

interrupts
_8102_wait_motion_interrupt – Wait motion related

interrupts
_8102_wait_gpio_interrupt – Waiting GPIO

interrupts

@ Description
_8102_int_control:

This function is used to enable the Windows interrupt event to host
PC.

_8102_set_motion_int_factor:

This function allows users to select motion related factors to initi-
ate the event int. The error can never be masked once the inter-
rupt service is turned on by _8102_int_control(). Once the
Interrupt function is enabled, you can use
_8102_wait_motion_interrupt() to wait event.

_8102_set_gpio_int_factor:

This function allows users to select GPIO related factors to initiate
the event int. The error can never be masked once the interrupt
service is turned on by _8102_int_control(). Once the Interrupt
function is enabled, you can use _8102_wait_gpio_interrupt() to
wait event.

_8102_wait_error_interrupt:

Function Library 155

PCI-8102

When user enabled the Interrupt function by _8102_int_control().
He could use this function to wait the errior interrupts.

_8102_wait_motion_interrupt:

When user enabled the Interrupt function by _8102_int_control()
and set the interrupt factors by _8102_set_motion_int_factor().
User could use this function to wait the specific interrupt. When
this function was running, the process would never stop until
evens were triggered or the function was time out.

_8102_wait_gpio_interrupt:

When user enabled the Interrupt function by _8102_int_control()
and set the interrupt factors by _8102_set_gpio_int_factor(). User
could use this function to wait the specific interrupt. When this
function was running, the process would never stop until evens
were triggered or the function was time out.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_int_control(I16 card_id, I16 intFlag);
I16 _8102_set_motion_int_factor(I16 AxisNo, U32

int_factor);
I16 _8102_set_gpio_int_factor(I16 card_id, U16

int_factor);
I16 _8102_wait_error_interrupt(I16 AxisNo, I32

TimeOut_ms);
I16 _8102_wait_motion_interrupt(I16 AxisNo, I16

IntFactorBitNo, I32 TimeOut_ms);
I16 _8102_wait_gpio_interrupt(I16 card_id, I16

IntFactorBitNo, I32 TimeOut_ms);
Visual Basic (Windows 2000/XP/7)

B_8102_int_control(ByVal card_id As Integer,
ByVal intFlag As Integer) As Integer

B_8102_wait_error_interrupt(ByVal AxisNo As
Integer, ByVal TimeOut_ms As Long) As
Integer

B_8102_wait_motion_interrupt(ByVal AxisNo As
Integer, ByVal IntFactorBitNo As Integer,
ByVal TimeOut_ms As Long) As Integer

156 Function Library

B_8102_set_motion_int_factor(ByVal AxisNo As
Integer, ByVal int_factor As Long) As
Integer

B_8102_wait_gpio_interrupt(ByVal card_id As
Integer, ByVal IntFactorBitNo As Integer,
ByVal TimeOut_ms As Long) As Integer

B_8102_set_gpio_int_factor(ByVal card_id As
Integer, ByVal int_factor As Integer) As
Integer

@ Argument
card_id: Specify the index of target PCI-8102 card. The card_id
could be decided by DIP switch (SW1) or depend on slot
sequence.Please refer to _8102_initial().

AxisNo: Axis number of Target Axis.

int_factor: interrupt factor

motion INT factors

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Value meaning (0: Disable, 1:Enable)

Bit Description

0 Normal stop
1 Starting the next operation continuously
2 Writing to the 2nd pre-register
3 Writing to the 2nd pre-register for trigger comparator
4 Start acceleration
5 Acceleration end
6 Start deceleration

Function Library 157

PCI-8102

GPIO INT factors

TimeOut_ms: Specifies the time-out interval, in milliseconds.

IntFactorBitNo: Specifies the bit number of the INT factor

7 Deceleration end
8 When soft limit turn on (positive direction)
9 When soft limit turn on (negetive direction)

10 When error comparator conditions are met
11 When general comparator conditions are met
12 When trigger comparator conditions are met
13 When resetting the count value with a CLR signal input
14 When Latching the count value with a LTC signal input
15 When Latching the count value with an ORG signal input
16 When the SD input is ON
17 When the +/-DR input is changed
18 When the CSTA input is ON

19~31 Not define (Always set to 0)

Value meaning (0: Disable, 1:Enable)

Bit Description

0 Digital Input 0 falling dege
1 Digital Input 1 falling dege
2 Digital Input 2 falling dege
3 Digital Input 3 falling dege
4 Digital Input 0 rising dege
5 Digital Input 1 rising dege
6 Digital Input 2 rising dege
7 Digital Input 3 rising dege
8 CLR/LTC/SD/PCS input 0 Interrupt enable
9 CLR/LTC/SD/PCS input 1 Interrupt enable
10 CLR/LTC/SD/PCS mode (0: falling edge, 1: rising edge)

11~15 Not define (Always set to 0)

Value meaning (0: Disable, 1:Enable)

Bit Description

158 Function Library

6.14 Position Control and Counters

@ Name
_8102_get_position – Get the value of feedback

position counter
_8102_set_position – Set the feedback position

counter
_8102_get_command – Get the value of command

position counter
_8102_set_command – Set the command position

counter
_8102_get_error_counter – Get the value of

position error counter
_8102_reset_error_counter – Reset the position

error counter
_8102_get_general_counter – get the value of

general counter
_8102_set_general_counter – Set the general

counter
_8102_get_target_pos – Get the value of target

position recorder
_8102_reset_target_pos – Reset target position

recorder
_8102_get_res_distance – Get remaining pulses

accumulated from motions
_8102_set_res_distance – Set remaining pulses

record

@ Description
_8102_get_position:

This function is used to read the feedback position counter value.
Note that this value has already been processed by the move ratio
setting by _8102_set_move_ratio(). If the move ratio is 0.5, than
the value of position will be twice. The source of the feedback
counter is selectable by the function _8102_set_feedback_src() to
be external EA/EB or internal pulse output of 8102 .

_8102_set_position:

Function Library 159

PCI-8102

This function is used to change the feedback position counter to
the specified value. Note that the value to be set will be processed
by the move ratio. If move ratio is 0.5, then the set value will be
twice as given value.

_8102_get_command:

This function is used to read the value of the command position
counter. The source of the command position counter is the pulse
output of the 8102.

_8102_set_command:

This function is used to change the value of the command position
counter.

_8102_get_error_counter:

This function is used to read the value of the position error coun-
ter.

_8102_reset_error_counter:

This function is used to clear the position error counter.

_8102_get_general_counter:

This function is used to read the value of the general counter.

_8102_set_general_counter:

This function is used to set the counting source of and change the
value of general counter (By default, the source is pulser input).

_8102_get_target_pos:

This function is used to read the value of the target position
recorder. The target position recorder is maintained by the 8102
software driver. It records the position to settle down for current
running motion.

_8102_reset_target_pos:

This function is used to set new value for the target position
recorder. It is necessary to call this function when home return
completes, or when a new feedback counter value is set by func-
tion _8102_set_position().

_8102_get_res_distance:

160 Function Library

This function is used to read the value of the residue distance
recorder. The target position recorder is maintained by the 8102
software driver. It records the position to settle down for current
running motion.

_8102_set_res_distance:

This function is used to change the value of the residue distance
counter

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_get_position(I16 AxisNo, F64 *Pos);
I16 _8102_set_position(I16 AxisNo, F64 Pos);
I16 _8102_get_command(I16 AxisNo, I32 *Command);
I16 _8102_set_command(I16 AxisNo, I32 Command);
I16 _8102_get_error_counter(I16 AxisNo, I16

*error);
I16 _8102_reset_error_counter(I16 AxisNo);
I16 _8102_get_general_counter(I16 AxisNo, F64

*CntValue);
I16 _8102_set_general_counter(I16 AxisNo, I16

CntSrc, F64 CntValue);
I16 _8102_get_target_pos(I16 AxisNo, F64 *T_pos);
I16 _8102_reset_target_pos(I16 AxisNo, F64

T_pos);
I16 _8102_get_res_distance(I16 AxisNo, F64

*Res_Distance);
I16 _8102_set_res_distance(I16 AxisNo, F64

Res_Distance);
Visual Basic (Windows 2000/XP/7)

B_8102_get_position(ByVal AxisNo As Integer, Pos
As Double) As Integer

B_8102_set_position(ByVal AxisNo As Integer,
ByVal Pos As Double) As Integer

B_8102_get_command(ByVal AxisNo As Integer, Cmd
As Long) As Integer

B_8102_set_command(ByVal AxisNo As Integer, ByVal
Cmd As Long) As Integer

B_8102_get_error_counter(ByVal AxisNo As Integer,
ByRef error As Integer) As Integer

B_8102_reset_error_counter(ByVal AxisNo As
Integer) As Integer

Function Library 161

PCI-8102

B_8102_set_general_counter(ByVal AxisNo As
Integer, ByVal CntSrc As Integer, ByVal
CntValue As Double) As Integer

B_8102_get_general_counter(ByVal AxisNo As
Integer, ByRef Pos As Double) As Integer

B_8102_reset_target_pos(ByVal AxisNo As Integer,
ByVal Pos As Double) As Integer

B_8102_get_target_pos(ByVal AxisNo As Integer,
ByRef Pos As Double) As Integer

B_8102_set_res_distance(ByVal AxisNo As Integer,
ByVal Res_Distance As Double) As Integer

B_8102_get_res_distance(ByVal AxisNo As Integer,
ByRef Res_Distance As Double) As Integer

@ Argument

AxisNo: Axis number of Target Axis.

Pos, *Pos: Feedback position counter value, (_8102_get/
set_position)

range: -134217728~134217727

command, *command: Command position counter value,

range: -134217728~134217727

*error: Position error counter value,

range: -32768~32767

CntSrc: general counter source

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Value Meaning

0 Command pulse
1 EA/EB

162 Function Library

CntValue, * CntValue: the counter value

T_pos, *T_pos: Target position recorder value,

range: -134217728~134217727

Res_Distance, * Res_Distance: residue distance

6.15 Position Compare and Latch

@ Name
_8102_set_trigger_logic – Set the CMP signal’s

logic
_8102_set_trigger_comparator – Set the trigger

comparator
_8102_set_error_comparator – Set the error

comparator
_8102_set_general_comparator – Set the general

comparator
_8102_set_latch_source – Set the latch timing for

a counter
_8102_set_ltc_logic – Set the logic of LTC signal
_8102_get_latch_data – Get the latch datas from

counter

@ Description
_8102_set_trigger_logic:

This function is used to set the logic of CMP single.

_8102_set_error_comparator:

This function is used to set the comparison method and value for
the error comparator. When the position error counter’s value
reaches the comparing value, the 8102 will generate an interrupt
to the host PC. Also see section 6.14 “Interrupt control”.

_8102_set_general_comparator:

2 Pulser input
3 System clock÷2

Value Meaning

Function Library 163

PCI-8102

This function is used to set the comparing source counter, compar-
ison method and value for the general comparator. When the com-
parison conditions are met, there is one of the 4 reactions will be
done. The detail setting, see the argument discribtion.

_8102_set_trigger_comparator:

This function is used to set the comparing source counter, compar-
ison method and value for the trigger comparator. When the com-
parison source counter’s value reaches the comparing value, the
8102 will generate a pulse output via CMP and an interrupt
(event_int_status, bit 12) will also be sent to host PC.

_8102_set_latch_source:

There are 4 latch triggering source. By using this function, user
can choose the event source to latch counters’ data.

_8102_set_ltc_logic:

This function is used to set the logic of the latch input.

_8102_get_latch_data:

After the latch signal arrived, the function is used to read the
latched value of counters.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_set_trigger_logic(I16 AxisNo, I16
Logic);

I16 _8102_set_error_comparator(I16 AxisNo, I16
CmpSrc, I16 CmpMethod,

I32 Data);
I16 _8102_set_general_comparator(I16 AxisNo, I16

CmpSrc, I16 CmpMethod,
I16 CmpAction, I32 Data);
I16 _8102_set_trigger_comparator(I16 AxisNo, I16

CmpSrc, I16 CmpMethod,
I32 Data);
I16 _8102_set_latch_source(I16 AxisNo, I16

ltc_src);
16 _8102_set_ltc_logic(I16 AxisNo, I16

ltc_logic);

164 Function Library

I16 _8102_get_latch_data(I16 AxisNo, I16
CounterNo, F64 *Pos);

Visual Basic (Windows 2000/XP/7)
B_8102_set_trigger_logic(ByVal AxisNo As Integer,

ByVal Logic As Integer) As Integer
B_8102_set_error_comparator(ByVal AxisNo As

Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal Data As Long) As
Integer

B_8102_set_general_comparator(ByVal AxisNo As
Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal CmpAction As
Integer, ByVal Data As Long) As Integer

B_8102_set_trigger_comparator(ByVal AxisNo As
Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal Data As Long) As
Integer

B_8102_set_latch_source(ByVal AxisNo As Integer,
ByVal ltc_src As Integer) As Integer

B_8102_set_ltc_logic(ByVal AxisNo As Integer,
ByVal ltc_logic As Integer) As Integer

B_8102_get_latch_data(ByVal AxisNo As Integer,
ByVal CounterNo As Integer, Pos As Double)
As Integer

@ Argument
AxisNo: Axis number of Target Axis.

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Function Library 165

PCI-8102

Logic: logic of comparing trigger

CmpSrc: The comparing source counters

CmpMethod: The comparison methods

Data: comparing value

CmpAction:

ltc_src:

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Command counter
1 Feedback counter
2 Error counter
3 General counter

Value Meaning

1 Data = Source counter (direction independent)
2 Data = Source counter (Count up only)
3 Data = Source counter (Count down only)
4 Data > Source counter
5 Data < Source counter

Value Meaning

0 No action
1 Stop immediately
2 Slow down then stop

Value Meaning

0 LTC pin input
1 ORG pin input

166 Function Library

ltc_logic: LTC signal operation edge

CounterNo: Specified the counter to latch

*Pos: Latch data

6.16 Continuous Motion

@ Name
_8102_set_continuous_move – toggle continuous

motion sequence flags
_8102_check_continuous_buffer – check if the

command register buffer is empty
_8102_dwell_move – Set a dwell move

@ Description
_8102_set_continuous_move():

This function is necessary before and after continuous motion
command sequences.

_8102_check_continuous_buffer():

2 general comparator conditions
are met

3 trigger comparator conditions are
met

Value Meaning

0 Negative logic
1 Positive logic

Value Meaning

0 Command counter
1 Feedback counter
2 Error counter
3 General counter

Value Meaning

Function Library 167

PCI-8102

This function is used to detect if the command pre-register is
empty or not. Once the command pre-register is empty, users may
write the next motion command into it. Otherwise, the new com-
mand will overwrite the previous command in the 2nd command
pre-register.

_8102_dwell_move:

This function is used to start a dwell move that means the move
does not cause real motion for a specific time.

Following example is shown how does the user
_8102_set_continuous_move(2, 1); // start

continuous move
_8102_start_tr_move(2, 20000.0, 10.0, 10000.0,

0.1, 0.1);
_8102_dwell_move(2, 2000); //dwell move for 2

sec.
_8102_start_sr_move(2, 20000.0, 10.0, 10000.0,

0.1, 0.1, 0, 0);
_8102_set_continuous_move(2, 0); //end

continuous move

@ Syntax
C/C++ (DOS, Windows 95/NT)

I16 _8102_set_continuous_move(I16 AxisNo, I16
conti_flag);

I16 _8102_check_continuous_buffer(I16 AxisNo);
I16 _8102_dwell_move(I16 AxisNo, F64 miniSecond);

Visual Basic (Windows 95/NT)
B_8102_set_continuous_move (ByVal AxisNo As

Integer, ByVal conti_flag As Integer) As
Integer

B_8102_check_continuous_buffer (ByVal AxisNo As
Integer) As Integer

B_8102_dwell_move(ByVal AxisNo As Integer, ByVal
miniSecond As Double) As Integer

168 Function Library

@ Argument
AxisNo: axis number Target Axis

conti_logic: continuous motion logic

miniSecond: Time of dwell move, the unit is in ms

6.17 Multiple Axes Simultaneous Operation

@ Name
_8102_set_tr_move_all – Multi-axis simultaneous

operation setup
_8102_set_ta_move_all – Multi-axis simultaneous

operation setup
_8102_set_sr_move_all – Multi-axis simultaneous

operation setup
_8102_set_sa_move_all – Multi-axis simultaneous

operation setup
_8102_start_move_all – Begin a multi-axis

trapezoidal profile motion
_8102_stop_move_all – Simultaneously stop Multi-

axis motion

@ Description
Theses functions are related to simultaneous operations of multi-
axes, even in different cards. The simultaneous multi-axis opera-

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Value Meaning

0 continuous motion sequence is finished
1 continuous motion sequence is started

Function Library 169

PCI-8102

tion means to start or stop moving specified axes at the same
time. The axes moved are specified by the parameter “AxisArray,”
and the number of axes are defined by parameter “TotalAxes” in
_8102_set_tr_move_all().

When properly setup with _8102_set_xx_move_all(), the function
_8102_start_move_all() will cause all specified axes to begin a
trapezoidal relative movement, and _8102_stop_move_all() will
stop them. Both functions guarantee that motion Starting/Stopping
on all specified axes are at the same time. Note that it is neces-
sary to make connections according to Section 3.13 if these two
functions are needed.

The following code demos how to utilize these functions. This
code moves axis 0 and axis 1 to distance 80000.0 and 120000.0
respectively. If we choose velocities and accelerations that are
proportional to the ratio of distances, then the axes will arrive at
their endpoints at the same time.

[Example]
I16 axes[2] = {0, 1};
F64 dist[2] = {80000.0, 120000.0},
F64 str_vel[2] = {0.0, 0.0},
F64 max_vel[2] = {4000.0, 6000.0},
F64 Tacc[2] = {0.1, 0.6},
F64 Tdec[2] = {0.1, 0.6};

_8102_set_tr_move_all(2, axes, dist,
str_vel, max_vel, Tacc, Tdec);
_8102_start_move_all(axes[0]);

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_set_tr_move_all(I16 TotalAxes, I16
*AxisArray, F64 *DistA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8102_set_ta_move_all(I16 TotalAx, I16
*AxisArray, F64 *PosA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8102_set_sr_move_all(I16 TotalAx, I16
*AxisArray, F64 *DistA, F64 *StrVelA, F64

170 Function Library

*MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8102_set_sa_move_all(I16 TotalAx, I16
*AxisArray, F64 *PosA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8102_start_move_all(I16 FirstAxisNo);
I16 _8102_stop_move_all(I16 FirstAxisNo);

Visual Basic (Windows 2000/XP/7)
B_8102_set_tr_move_all(ByVal TotalAxes As

Integer, ByRef AxisArray As Integer, ByRef
DistA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double) As Integer

B_8102_set_sa_move_all(ByVal TotalAxes As
Integer, ByRef AxisArray As Integer, ByRef
PosA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double, ByRef SVaccA
As Double, ByRef SVdecA As Double) As
Integer

B_8102_set_ta_move_all(ByVal TotalAxes As
Integer, ByRef AxisArray As Integer, ByRef
PosA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double) As Integer

B_8102_set_sr_move_all(ByVal TotalAxes As
Integer, ByRef AxisArray As Integer, ByRef
DistA As Double, ByRef StrVelA As Double,
ByRef MaxVelA As Double, ByRef TaccA As
Double, ByRef TdecA As Double, ByRef SVaccA
As Double, ByRef SVdecA As Double) As
Integer

B_8102_start_move_all(ByVal FirstAxisNo As
Integer) As Integer

B_8102_stop_move_all(ByVal FirstAxisNo As
Integer) As Integer

@ Argument
TotalAxes: Number of axes for simultaneous motion

*AxisArray: Specified axes number array designated to move.

Function Library 171

PCI-8102

*DistA: Specified distance array in units of pulse

*StrVelA: Starting velocity array in units of pulse per second

*MaxVelA: Maximum velocity array in units of pulse per second

*TaccA: Acceleration time array in units of seconds

*TdecA: Deceleration time array in units of seconds

*PosA: Specified position array in units of pulse

*SvaccA: Specified velocity interval array in which S-curve accel-
eration is performed.

*SvdecA: Specified velocity interval array in which S-curve decel-
eration is performed.

FirstAxisNo: The first element in AxisArray.

6.18 General-Purposed DIO

@ Name
_8102_set_gpio_output – Set digital output
_8102_get_gpio_output – Get digital output
_8102_get_gpio_input – Get digital input
_8102_set_gpio_output2 – Set digital output to P2
_8102_get_gpio_output2 – Get digital output form

P2
_8102_get_gpio_input2 – Get digital input form P2

@ Description
_8102_set_gpio_output:

The PCI-8102 has 2 digital output channels. By this function, user
could

control the digital outputs.

_8102_get_gpio_output:

This function is used to get the digitl output status.

_8102_get_gpio_input:

172 Function Library

PCI-8102 has 4 digital input channels. By this function, user can
get the

digital input status.

_8102_set_gpio_output2:

The PCI-8102 has 16 digital output channels on P2. By this func-
tion, user could control the

digital outputs.

_8102_get_gpio_output2:

This function is used to get the digital output status.

_8102_get_gpio_input2:

PCI-8102 has 16 digital input channels on P2. By this function,
user can get the digital input

status.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_set_gpio_output(I16 card_id, U16
do_value);

I16 _8102_get_gpio_output(I16 card_id, U16
*do_status);

I16 _8102_get_gpio_input(I16 card_id, U16
*di_status);

I16 _8102_set_gpio_output2(I16 card_id, U16
do_value);

I16 _8102_get_gpio_output2(I16 card_id, U16
*do_status);

I16 _8102_get_gpio_input2(I16 card_id, U16
*di_status_2);

Visual Basic (Windows 2000/XP/7)
B_8102_set_gpio_output Lib "8102.dll" Alias

"_8102_set_gpio_output"
(ByVal card_id As Integer, ByVal do_value As

Integer) As Integer

Function Library 173

PCI-8102

B _8102_get_gpio_output Lib "8102.dll" Alias
"_8102_get_gpio_output"

(ByVal card_id As Integer, do_status As Integer)
As Integer

B _8102_get_gpio_input Lib "8102.dll" Alias
"_8102_get_gpio_input" (ByVal

card_id As Integer, di_status As Integer) As
Integer

B _8102_set_gpio_output2 (ByVal card_id As
Integer, ByVal do_value As Integer) As
Integer

B _8102_get_gpio_output2 (ByVal card_id As
Integer, do_status As Integer) As Integer

B _8102_get_gpio_input2 (ByVal card_id As
Integer, di_status_2 As Integer) As Integer

@ Argument
card_id: Specify the PCI-8102 card index. The card_id could be
decided by

DIP switch (SW1) or depend on slot sequence.Please refer
to_8102_initial().

do_value: Unsigned 16 bits value. Bit 0: D_out0, Bit 1: D_out1

*do_status: Digital output status. Bit 0: D_out0, Bit 1: D_out1

*di_status: Digital input status, Bit0~3: D_in0~3

*di_status_2: Digital input status, Bit0~15: D_in0~15

6.19 Soft Limit
@ Name

_8102_disable_soft_limit – Disable soft limit
function

_8102_enable_soft_limit – Enable soft limit
function

_8102_set_soft_limit – Set soft limit

174 Function Library

@ Description
_8102_disable_soft_limit:

This function is used to disable the soft limit function.

_8102_enable_soft_limit:

This function is used to enable the soft limit function. Once
enabled, the action of soft limit will be exactly the same as physi-
cal limit.

_8102_set_soft_limit:

This function is used to set the soft limit value.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_disable_soft_limit(I16 AxisNo);
I16 _8102_enable_soft_limit(I16 AxisNo, I16

Action);
I16 _8102_set_soft_limit(I16 AxisNo, I32

Plus_Limit, I32 Neg_Limit);

Visual Basic (Windows 2000/XP/7)
B_8102_disable_soft_limit(ByVal AxisNo As

Integer) As Integer
B_8102_enable_soft_limit(ByVal AxisNo As Integer,

ByVal Action As Integer) As Integer
B_8102_set_soft_limit(ByVal AxisNo As Integer,

ByVal Plus_Limit As Long, ByVal Neg_Limit As
Long) As Integer

@ Argument
AxisNo: Axis number of Target Axis.

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

Function Library 175

PCI-8102

Action: The reacting method of soft limit

Plus_Limit: Soft limit value, positive direction

Neg_Limit: Soft limit value, negative direction

6.20 Backlash Compensation / Vibration Suppression

@ Name
_8102_backlash_comp – Set backlash corrective

pulse for compensation
_8102_suppress_vibration – Set vibration

suppressing timing
_8102_set_fa_speed – Set the FA speed

@ Description
_8102_backlash_comp:

Whenever direction change occurs, the 8102 outputs backlash
corrective pulses before sending commands. This function is used
to set the compensation pulse numbers.

_8102_suppress_vibration:

This function is used to suppress vibration of mechanical systems
by outputting a single pulse for negative direction and the single
pulse for positive direction right after completion of command
movement.

_8102_set_fa_speed:

2
0 4
1 …

Value Meaning

0 INT only
1 Immediately stop
2 slow down then stop

card_id Physical axis AxisNo

176 Function Library

This function is used to specify the low speed for backlash correc-
tion or slip correction. It also used as a reverse low speed for
home return operation.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_backlash_comp(I16 AxisNo, I16
CompPulse, I16 Mode);

I16 _8102_suppress_vibration(I16 AxisNo, U16
ReverseTime,

U16 ForwardTime);
I16 _8102_set_fa_speed(I16 AxisNo, F64 FA_Speed);

Visual Basic (Windows 2000/XP/7)
B_8102_backlash_comp Lib "8102.dll" Alias

"_8102_backlash_comp" (ByVal AxisNo As
Integer, ByVal CompPulse As Integer, ByVal
Mode As Integer) As Integer

B_8102_suppress_vibration(ByVal AxisNo As
Integer, ByVal ReverseTime As Integer, ByVal
ForwardTime As Integer) As Integer

B_8102_set_fa_speed(ByVal AxisNo As Integer,
ByVal FA_Speed As Double) As Integer

@ Argument
AxisNo: Axis number of Target Axis.

CompPulse: Specified number of corrective pulses, 12 bit

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

Function Library 177

PCI-8102

Mode:

ReverseTime: Specified Reverse Time, 0 ~ 65535, unit 1.6 us

ForwardTime: Specified Forward Time, 0 ~ 65535, unit 1.6 us

FA_Speed: fa speed (unit: pulse/sec)

6.21 Speed Profile Calculation

@ Name
_8102_get_tr_move_profile – Get the relative

trapezoidal speed profile
_8102_get_ta_move_profile – Get the absolute

trapezoidal speed profile
_8102_get_sr_move_profile – Get the relative S-

curve speed profile
_8102_get_sa_move_profile – Get the absolute S-

curve speed profile

@ Description
_8102_get_tr_move_profile:

This function is used to get the relative trapezoidal speed profiles.
By this function, user can get the actual speed profile before run-
ning.

_8102_get_ta_move_profile:

This function is used to get the absolute trapezoidal speed pro-
files. By this function, user can get the actual speed profile before
running.

_8102_get_sr_move_profile:

This function is used to get the relative S-curve speed profiles. By
this function, user can get the actual speed profile before running.

_8102_get_sa_move_profile:

Value Meaning

0 Turns off
1 enable backlash compensation
2 Slip correction

178 Function Library

This function is used to get the absolute S-curve speed profiles.
By this function user can get the actual speed profile before run-
ning.

@ Syntax
C/C++(Windows 2000/XP/7)

I16 _8102_get_tr_move_profile(I16 AxisNo, F64
Dist, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 *pStrVel, F64 *pMaxVel, F64
*pTacc, F64 *pTdec, F64 *pTconst);

I16 _8102_get_ta_move_profile(I16 AxisNo, F64
Pos, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 *pStrVel, F64 *pMaxVel, F64
*pTacc, F64 *pTdec, F64 *pTconst);

I16 _8102_get_sr_move_profile(I16 AxisNo, F64
Dist, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 SVacc, F64 SVdec,F64 *pStrVel, F64
*pMaxVel, F64 *pTacc, F64 *pTdec, F64
*pSVacc, F64 *pSVdec, F64 *pTconst);

I16 _8102_get_sa_move_profile(I16 AxisNo, F64
Pos, F64 StrVel, F64 MaxVel, F64 Tacc, F64
Tdec, F64 SVacc, F64 SVdec,F64 *pStrVel, F64
*pMaxVel, F64 *pTacc, F64 *pTdec, F64
*pSVacc, F64 *pSVdec, F64 *pTconst);

Visual Basic (Windows 2000/XP/7)
B_8102_get_tr_move_profile(ByVal AxisNo As

Integer, ByVal Dist As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByRef
pStrVel As Double, ByRef pMaxVel As Double,
ByRef pTacc As Double, ByRef pTdec As
Double, ByRef pTconst As Double) As Integer

B_8102_get_ta_move_profile(ByVal AxisNo As
Integer, ByVal Pos As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByRef
pStrVel As Double, ByRef pMaxVel As Double,
ByRef pTacc As Double, ByRef pTdec As
Double, ByRef pTconst As Double) As Integer

B_8102_get_sr_move_profile(ByVal AxisNo As
Integer, ByVal Dist As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal

Function Library 179

PCI-8102

Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double,
ByRef pStrVel As Double, ByRef pMaxVel As
Double, ByRef pTacc As Double, ByRef pTdec
As Double, ByRef pSVacc As Double, ByRef
pSVdec As Double, ByRef pTconst As Double)
As Integer

B_8102_get_sa_move_profile(ByVal AxisNo As
Integer, ByVal Pos As Double, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double,
ByRef pStrVel As Double, ByRef pMaxVel As
Double, ByRef pTacc As Double, ByRef pTdec
As Double, ByRef pSVacc As Double, ByRef
pSVdec As Double, ByRef pTconst As Double)
As Integer

@ Argument
AxisNo: Axis number of Target Axis.

Dist: Specified relative distance (unit: pulse)

Pos: Specified absolute position (unit: pulse)

StrVel: Starting velocity (unit: pulse/sec)

MaxVel: Maximum velocity (unit: pulse/sec)

Tacc: time for acceleration (unit: sec)

Tdec: time for deceleration (unit: sec)

SVacc: S-curve region during acceleration (unit: pulse/sec)

Note: SVacc = 0, for pure S-Curve. For more details, section

card_id Physical axis AxisNo

0
0 0
1 1

1
0 2
1 3

2
0 4
1 …

180 Function Library

4.2.4
SVdec: S-curve region during deceleration (unit: pulse/sec)

Note: SVdec = 0, for pure S-Curve. For more details, section
4.2.4

*pStrVel: Starting velocity by calculation

*pMaxVel: Maximum velocity by calculation

*pTacc: Acceleration time by calculation

*pTdec: Deceleration time by calculation

*pSVacc: S-curve region during acceleration by calculation

*pSVdec: S-curve region during deceleration by calculation

*pTconst: constant speed time(maximum speed)

6.22 Return Code
The return error code is defined in “8102_err.h”. The meaning is
discribed in following table.

Code Meaning

0 No error
-10000 Error Card number
-10001 Error operation system version
-10002 Error card’s ID conflict
-10200 Error other process exist
-10201 Error card not found
-10202 Error Open driver failed
-10203 Error ID mapping failed
-10204 Error trigger channel
-10205 Error trigger type
-10206 Error event already enabled
-10207 Error event not enable yet
-10208 Error on board FIFO full
-10209 Error unknown command type
-10210 Error unknown chip type
-10211 Error card not initial

Function Library 181

PCI-8102

-10212 Error position out of range
-10213 Error motion busy
-10214 Error speed error
-10215 Error slow down point
-10216 Error axis range error
-10217 Error compare parameter error
-10218 Error compare method
-10219 Error axis already stop
-10220 Error axis INT wait failed
-10221 Error user code write failed
-10222 Error array size exceed
-10223 Error factor number
-10224 Error enable range
-10225 Error auto accelerate time
-10226 Error dwell time
-10227 Error dwell distance
-10228 Error new position
-10229 Error motion not in running
-10230 Error velocity change time
-10231 Error speed target
-10232 Error velocity percent
-10233 Error postion change backward
-10234 Error counter number

Code Meaning

182 Function Library

This page intentionally left blank.

Connection Example 183

PCI-8102

7 Connection Example
This chapter shows some connection examples between the PCI-
8102 and servo drivers and stepping drivers.

7.1 General Description of Wiring
Main connection between the PCI-8102 and the pulse input servo
driver or stepping driver. The following figure illustrates how to
integrate the PCI-8102 and DIN-68M-J3A

7.2 Wiring with DIN-68M-J3A
Notice: The DIN-68M-J3A is used for wiring between Mitsubishi J3A

series servo drivers / stepper with pulse trains input driver
and ADLINK cPCI-8168, PCI-8102 motion controller card
ONLY. Never use this terminal board with any other servo
driver or cards.

184 Connection Example

Notes:

1. Servo & Stepper: The DIN-68M-J3A provides 2 connection
methods for each axis: CN1F1 & CN1F2 connectors for
Mitsubishi J3A series servo drivers, and a SJ connector for
stepping drivers. DO NOT use both connectors at the same
time.

2. CN1F1 or CN1F2 cables: One pin-to-pin 50-PIN cables are
required for connection between the CF1F1(CN1F2) and the
Mitsubishi J3A driver. It is available from ADLINK, or users
may contact the local dealer or distributor to get cable infor-
mation.

3. JP1: Fuse selection. Pin 1-2 short means the board is pro-
tected by fuse. Pin 2-3 short means the board is not protect-
ed by fuse.

4. Fuse: The fuse protects from damaging internal circuit. This
fuse can sustain 2A current. Users can buy it in local area
when the fuse is burnt out.

Connection Example 185

PCI-8102

7.2.1 Pin Assignments:
CN1F1/CN1F2 (Mitsubishi AC Servo Driver J3A)

No. Name I/O Function No. Name I/O Function

1 P15R -- 15VDC power
supply 2 VLA O Analog speed

limit

3 EXGND -- Ext. power ground 4 EA+ I Encoder A-phase
(+)

5 EA- I Encoder A-phase
(-) 6 EB+ I Encoder B-phase

(+)

7 EB- I Encoder B-phase
(-) 8 EZ+ I Encoder Z-phase

(+)

9 EZ- I Encoder Z-phase
(-) 10 OUT+ O Pulse signal (+)

11 OUT- O Pulse signal (-) 12 (Empt
y)

N.
C.

13 (Empty) N.
C. 14 (Empt

y)
N.
C.

15 SERVO
ON O Servo On signal 16 SP2 O Speed selection 2

17 ABSM O ABS transfer 18 ABSR O ABS request

19 RES O Reset 20 EX+2
4V I Ext. power

supply, +24V

21 EX+24V I Ext. power supply,
+24V 22 ABSB

0 I ABS transmission
data bit 0

23 ZSP I Zero speed 24 INP I Servo In Position
signal

25 TLC I Limiting torque 26 (Empt
y)

N.
C.

27 TC O Analog torque
command 28 EXG

ND -- Ext. power
ground

29 (Empty) N.
C. 30 (Empt

y)
N.
C.

31 (Empty) N.
C. 32 (Empt

y)
N.
C.

33 (Empty) N.
C. 34 EXG

ND -- Ext. power
ground

186 Connection Example

35 DIR+ O Direction Signal
(+) 36 DIR- O Direction Signal (-

)

37 (Empty) N.
C. 38 (Empt

y)
N.
C.

39 (Empty) N.
C. 40 (Empt

y)
N.
C.

41
ERC O Dev. ctr, clr. Signal

42 EMG I External EMG
SignalSP1 O Speed selection 1

43 EXGND -- Ext. power ground 44 EXG
ND -- Ext. power

ground

45 LOP O Control change 46 EXG
ND -- Ext. power

ground
47 EXGND -- Ext. power ground 48 ALM I Servo Alarm

49 RDY I Servo Ready 50 (Empt
y)

N.
C.

No. Name I/O Function No. Name I/O Function

Connection Example 187

PCI-8102

IOIF1/IOIF2 (External Motion Input Signal Interface)

No. Name I/O Function No. Name I/O Function

1 EXG
ND -- Ext. power ground 19 EX+24

V I Ext. power supply,
+24V

2 EXG
ND -- Ext. power ground 20 EX+24

V I Ext. power supply,
+24V

3 EXG
ND -- Ext. power ground 21 EX+24

V I Ext. power supply,
+24V

4 EXG
ND -- Ext. power ground 22 EX+24

V I Ext. power supply,
+24V

5 EXG
ND -- Ext. power ground 23 EX+24

V I Ext. power supply,
+24V

6
SD I Slow Down signal

24 MEL I Negative Limit (-)EXG
ND -- Ext. power ground

7 CMP O Compare Trigger
Output

25 PEL I Positive Limit (+)
EXG
ND -- Ext. power ground

8 RES O Reset 26 ORG I Origin signal

9 DOU
T O Digital Output 27 DO_C

OM I Digital Output
COM

10
HSO
UT O

High Speed DO
28

HO_C
OM I Common of

HSOUT
AO Analog Output AGND -- Analog Ground

11 DIN I Digital Input 29 DI_CO
M I Digital Input COM

12 EMG I External EMG Signal 30
HSIN I High Speed DI
AIN Analog Input

13 ABSB
0 I ABS transmission

data bit 0 31 P15R -- 15VDC power
supply

14 ABS
M O ABS transfer 32

ERC O Dev. ctr, clr. Signal
SP1 O Speed selection 1

15 VLA O Analog speed limit 33 SP2 O Speed selection 2

16 ABSR O ABS request 34 TC O Analog torque
command

188 Connection Example

17 ZSP I Zero speed 35 TLC I Limiting torque

18 EXG
ND -- Ext. power ground 36 LOP O Control change

No. Name I/O Function No. Name I/O Function

Connection Example 189

PCI-8102

SJ1/SJ2 (Stepping Motor Control Interface)

PWC1 (External +24VDC Input Connector)

JP1 (Setting for fuse)

No. Name I/O Function

1 OUT+ O Pulse Signal (+)
2 OUT- O Pulse Signal (-)
3 DIR+ O Direction Signal (+)
4 DIR- O Direction Signal (-)
5 EZ+ I Index Signal
6 ALM I Servo Alarm
7 +5V O Voltage output
8 Servo ON O Servo On
9 +5V O Voltage output
10 EXGND -- Ext. power ground

No. Name I/O Function

1 EXGND -- External Power Supply Ground

2 EX+24V I External Power Supply Input (+24V DC ± 5%)

190 Connection Example

7.2.2 Signal Connections of Interface Circuit
1. PEL, MEL, ORG, INP, ALM, RDY

2. CMP

3. ERC, SVON

4. EA+, EB+, EZ+, EA-, EB-, EZ-

Connection Example 191

PCI-8102

5. DIN, DI_COM

6. DOUT, DO_COM

7. DIR+, OUT+ ,DIR-, OUT-

192 Connection Example

8. HSIN

9. HSOUT, HO_COM

This page intentionally left blank.

Connection Example 193

PCI-8102

7.2.3 Mechanical Dimensions:
NOTE: All dimensions are in mm.

194 Connection Example

This page intentionally left blank.

Appendix 195

PCI-8102

Appendix

8.1 Color code of Mitsubishi servo J3A cable
Note: (MRJ3CN1 xM-OPEN)

196 Appendix

This page intentionally left blank.

Important Safety Instructions 197

EOS-1200

Important Safety Instructions

For user safety, please read and follow all instructions,
WARNINGS, CAUTIONS, and NOTES marked in this manual
and on the associated equipment before handling/operating the
equipment.

Read these safety instructions carefully.
Keep this user’s manual for future reference.
Read the specifications section of this manual for detailed
information on the operating environment of this equipment.
When installing/mounting or uninstalling/removing
equipment:

Turn off power and unplug any power cords/cables.
To avoid electrical shock and/or damage to equipment:

Keep equipment away from water or liquid sources;
Keep equipment away from high heat or high humidity;
Keep equipment properly ventilated (do not block or
cover ventilation openings);
Make sure to use recommended voltage and power
source settings;
Always install and operate equipment near an easily
accessible electrical socket-outlet;
Secure the power cord (do not place any object on/over
the power cord);
Only install/attach and operate equipment on stable
surfaces and/or recommended mountings; and,
If the equipment will not be used for long periods of time,
turn off and unplug the equipment from its power source.

198 Important Safety Instructions

Never attempt to fix the equipment. Equipment should only
be serviced by qualified personnel.

A Lithium-type battery may be provided for uninterrupted, backup
or emergency power.

Equipment must be serviced by authorized technicians
when:

The power cord or plug is damaged;
Liquid has penetrated the equipment;
It has been exposed to high humidity/moisture;
It is not functioning or does not function according to the
user’s manual;
It has been dropped and/or damaged; and/or,
It has an obvious sign of breakage.

WARNING:

Risk of explosion if battery is replaced with one of an incorrect
type. Dispose of used batteries appropriately.

Getting Service 199

EOS-1200

Getting Service

Contact us should you require any service or assistance.

ADLINK Technology, Inc.
Address: 9F, No.166 Jian Yi Road, Zhonghe District
 New Taipei City 235, Taiwan

166 9
Tel: +886-2-8226-5877
Fax: +886-2-8226-5717
Email: service@adlinktech.com

Ampro ADLINK Technology, Inc.
Address: 5215 Hellyer Avenue, #110, San Jose, CA 95138, USA
Tel: +1-408-360-0200
Toll Free: +1-800-966-5200 (USA only)
Fax: +1-408-360-0222
Email: info@adlinktech.com

ADLINK Technology (China) Co., Ltd.
Address: 300 (201203)
 300 Fang Chun Rd., Zhangjiang Hi-Tech Park,

Pudong New Area, Shanghai, 201203 China
Tel: +86-21-5132-8988
Fax: +86-21-5132-3588
Email: market@adlinktech.com

ADLINK Technology Beijing
Address: 1 E 801 (100085)

Rm. 801, Power Creative E, No. 1, B/D
Shang Di East Rd., Beijing, 100085 China

Tel: +86-10-5885-8666
Fax: +86-10-5885-8625
Email: market@adlinktech.com

ADLINK Technology Shenzhen
Address:

A1 2 C (518057)
2F, C Block, Bldg. A1, Cyber-Tech Zone, Gao Xin Ave. Sec. 7,
High-Tech Industrial Park S., Shenzhen, 518054 China

Tel: +86-755-2643-4858
Fax: +86-755-2664-6353
Email: market@adlinktech.com

200 Getting Service

ADLINK Technology, Inc. (French Liaison Office)
Address: 15 rue Emile Baudot, 91300 Massy CEDEX, France
Tel: +33 (0) 1 60 12 35 66
Fax: +33 (0) 1 60 12 35 66
Email: france@adlinktech.com

ADLINK Technology Japan Corporation
Address: 101-0045 3-7-4

374 4F
KANDA374 Bldg. 4F, 3-7-4 Kanda Kajicho,
Chiyoda-ku, Tokyo 101-0045, Japan

Tel: +81-3-4455-3722
Fax: +81-3-5209-6013
Email: japan@adlinktech.com

ADLINK Technology, Inc. (Korean Liaison Office)
Address: 1675-12 8

8F Mointer B/D,1675-12, Seocho-Dong, Seocho-Gu,
Seoul 137-070, Korea

Tel: +82-2-2057-0565
Fax: +82-2-2057-0563
Email: korea@adlinktech.com

ADLINK Technology Singapore Pte. Ltd.
Address: 84 Genting Lane #07-02A, Cityneon Design Centre,

Singapore 349584
Tel: +65-6844-2261
Fax: +65-6844-2263
Email: singapore@adlinktech.com

ADLINK Technology Singapore Pte. Ltd. (Indian Liaison Office)
Address: 1st Floor, #50-56 (Between 16th/17th Cross) Margosa Plaza,

Margosa Main Road, Malleswaram, Bangalore-560055, India
Tel: +91-80-65605817, +91-80-42246107
Fax: +91-80-23464606
Email: india@adlinktech.com

ADLINK Technology, Inc. (Israeli Liaison Office)
Address: 6 Hasadna St., Kfar Saba 44424, Israel
Tel: +972-9-7446541
Fax: +972-9-7446542
Email: israel@adlinktech.com

	Revision History
	Table of Contents
	List of Figures
	Preface
	1 Introduction
	1.1 Features
	1.2 Specifications
	1.3 Supported Software
	Programming Library
	MotionCreatorPro

	1.4 Available Terminal Board

	2 Installation
	2.1 Package Contents
	2.2 PCI-8102 Outline Drawing
	2.3 PCI-8102 Hardware Installation
	2.3.1 Hardware Configuration
	2.3.2 PCI Slot Selection
	2.3.3 Installation Procedures
	2.3.4 Troubleshooting

	2.4 Software Driver Installation
	2.5 P1 Pin Assignments: Main connector
	2.6 P2 Pin Assignment: Digital Inputs / Outputs
	2.7 K1/K2 Pin Assignments: Simultaneous Start/ Stop
	2.8 Jumper Settings for Pulse Output
	2.9 CMP & EMG Interface Settings
	2.10 Switch Setting for card index

	3 Signal Connections
	3.1 Pulse Output Signals OUT and DIR
	3.2 Encoder Feedback Signals EA, EB and EZ
	3.3 EMG Emergency Stop
	3.4 Origin Signal ORG
	3.5 End-Limit Signals PEL and MEL
	3.6 In-Position Signal INP
	3.7 Alarm Signal ALM
	3.8 Deviation Counter Clear Signal ERC
	3.9 General-Purpose Signal SVON
	3.10 General-Purpose Signal RDY
	3.11 Position Compare Output pin: CMP
	3.12 Multi-Functional Input Pin: LTC/SD/PCS/CLR
	3.13 Simultaneously Start/Stop Signals STA and STP
	3.14 General Purpose Digital Input/Output
	3.14.1 Extended DSUB 37-pin Connector

	4 Operations
	4.1 Classifications of Motion Controller
	4.1.1 Voltage Type Motion Control Interface
	4.1.2 Pulse Type Motion Control Interface
	4.1.3 Network Type Motion Control Interface
	4.1.4 Software Real-time Motion Control Kernel
	4.1.5 DSP Based Motion Control Kernel
	4.1.6 ASIC Based Motion Control Kernel
	4.1.7 Compare Table of All Motion Control Types
	4.1.8 PCI-8102’s Motion Controller Type

	4.2 Motion Control Modes
	4.2.1 Coordinate System
	4.2.2 Absolute and Relative Position Move
	4.2.3 Trapezoidal Speed Profile
	4.2.4 S-Curve and Bell-Curve Speed Profile
	4.2.5 Velocity Mode
	4.2.6 One Axis Position Mode
	4.2.7 Two Axes Linear Interpolation Position Mode
	4.2.8 Two Axes Circular Interpolation Mode
	4.2.9 Continuous Motion
	4.2.10 Home Return Mode
	4.2.11 Home Search Function
	4.2.12 Manual Pulser Function
	4.2.13 Simultaneous Start Function
	4.2.14 Speed Override Function
	4.2.15 Position Override Function

	4.3 Motor Driver Interface
	4.3.1 Pulse Command Output Interface
	4.3.2 Pulse Feedback Input Interface
	4.3.3 In Position Signal
	4.3.4 Servo Alarm Signal
	4.3.5 Error Clear Signal
	4.3.6 Servo ON/OFF Switch
	4.3.7 Servo Ready Signal
	4.3.8 Servo Alarm Reset Switch

	4.4 Mechanical Switch Interface
	4.4.1 Original or Home Signal
	4.4.2 End-Limit Switch Signal
	4.4.3 Slow Down Switch
	4.4.4 Positioning Start switch
	4.4.5 Counter Clear switch
	4.4.6 Counter Latch Switch
	4.4.7 Emergency Stop Input

	4.5 Counters
	4.5.1 Command Position Counter
	4.5.2 Feedback Position Counter
	4.5.3 Command and Feedback Error Counter
	4.5.4 General Purpose Counter
	4.5.5 Target Position Recorder

	4.6 Comparators
	4.6.1 Soft End-Limit Comparators
	4.6.2 Command and Feedback Error Counter Comparators
	4.6.3 General Comparator
	4.6.4 Trigger Comparator

	4.7 Other Motion Functions
	4.7.1 Backlash Compensation and Slip Corrections
	4.7.2 Vibration Restriction Function
	4.7.3 Speed Profile Calculation Function

	4.8 Interrupt Control
	4.9 Multiple Card Operation

	5 MotionCreatorPro
	5.1 Execute MotionCreatorPro
	5.2 About MotionCreatorPro
	5.3 MotionCreatorPro Form Introduction
	5.3.1 Main Menu
	5.3.2 Select Menu
	5.3.3 Card Information Menu
	5.3.4 Configuration Menu
	5.3.5 Single Axis Operation Menu
	5.3.6 Two-Axis Operation Menu
	5.3.7 2D_Motion Menu
	5.3.8 Help Menu

	6 Function Library
	6.1 List of Functions
	6.2 C/C++ Programming Library
	6.3 Initialization
	6.4 Pulse Input/Output Configuration
	6.5 Velocity mode motion
	6.6 Single Axis Position Mode
	6.7 Linear Interpolated Motion
	6.8 Circular Interpolation Motion
	6.9 Home Return Mode
	6.10 Manual Pulser Motion
	6.11 Motion Status
	6.12 Motion Interface I/O
	6.13 Interrupt Control
	6.14 Position Control and Counters
	6.15 Position Compare and Latch
	6.16 Continuous Motion
	6.17 Multiple Axes Simultaneous Operation
	6.18 General-Purposed DIO
	6.19 Soft Limit
	6.20 Backlash Compensation / Vibration Suppression
	6.21 Speed Profile Calculation
	6.22 Return Code

	7 Connection Example
	7.1 General Description of Wiring
	7.2 Wiring with DIN-68M-J3A
	7.2.1 Pin Assignments:
	7.2.2 Signal Connections of Interface Circuit
	7.2.3 Mechanical Dimensions:

	Appendix
	8.1 Color code of Mitsubishi servo J3A cable

	Important Safety Instructions
	Getting Service

